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In the present paper, the dynamic and static stability of composite shells 
for different aerodynamic configurations is investigated. Based on the 
existing models for flutter and torsional divergence, modified to include 
material anisotropy, stability parameters have been calculated for different 
aspects and taper ratios of the lifting (control) surface configurations. It 
was found that the methodology presented is a very effective method for 
stability analysis in preliminary design phases when a large number of 
cases have to be analyzed from the aspect of aerodynamics and flight 
conditions.  
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1. INTRODUCTION 

 

In the present paper, the effect of aspect and taper ratio 
on the overall stability of composite plates is inves–
tigated. During the flight, within the flight envelope, as 
a result of inertial, aerodynamic, and elastic forces’ 
constant interaction, a loss of stability might occur. This 
may potentially lead to stability loss which further leads 
to loss of control and, in certain cases, to disastrous 
airframe components failure with a catastrophic 
outcome (flight vehicle destruction). 

It is of paramount importance that the stability ana–
lysis of plates and shells is analyzed even in the early 
stages of the design since these components represent the 
main building block of any flight-worthy vehicle, manned 
and unmanned. This might particularly interest 
components such as missile fins and stabilizing surfaces.  

The effect of aspect and taper ratio on the overall 
stability loss of thin plates used as stabilizing and con–
trol surfaces is investigated. For different geometries by 
varying geometry parameters within the practical limits 
of the design, different geometries are analyzed. 
Parameters used to evaluate the aspect, and taper effects 
are expressed in terms of flutter velocities(Vf), stability 
margin (cal), drag coefficient increase (Cx), and 
divergence velocity (Vdiv). Modern aircraft structures 
are very flexible, and airframe flexibility makes aero–
elastic studies, both dynamic and static, make an im–
portant aspect of aircraft design and verification pro–
cedures. 

Arising from the interaction of elastic, inertial, and 
aerodynamic forces, acting on anelastic body, flutter is 
considered to be a dynamic aeroelastic instability that is 
characterized by the sustained oscillation of structure. 
The capability of a structure to sustain these oscillations 
is usually expressed using flutter speed as a measure of 
structural stability and represents the maximal speed at 
which the structure is considered to be stable. Above the 

flutter speed, the structure becomes unstable and may 
lead to structural failure. Many current standards require 
that the flutter velocity is at least 20% higher than the 
flight “never exceed speed” (VNE).  

Apart from flutter, another aeroelastic phenomenon 
(static) that designers should take into account is 
divergence. As for flutter, the divergence has an asso–
ciated speed at which this phenomenon might occur. 
Potentially, divergence might lead to a structural failure 
as well. Divergence speed (Vdiv), like flutter speed, 
must reside well above the flight envelope for all flight-
worthy vehicles. Throughout history, early airplanes had 
major divergence problems, like the Langley airplane 
and the Wright brothers’ plane. Requirements for diver–
gence speeds are also regulated through modern stan–
dards currently in use. Hence, in structure analysis, it is 
of great importance to predict the divergence speed 
since it provides a useful measure of the general (torsi–
onal) stiffness level of the plate and shell structure. In 
general, modern airplanes, due to proper design and 
stiffer materials, have divergence speeds higher than 
flutter speeds.  

Structural stiffness is relatively low for flexible 
plates and shells. These structures are, therefore, more 
susceptible to instabilities even at low flow velocities. 
In this case, divergence and flutter can easily occur at 
relatively low velocities. 

Because of their intrinsic property to be tailored to a 
specific function, composite materials are extensively 
used in the aerospace industry. Compared to metals, they 
have low specific weight, high specific modulus, and 
extremely high values of strength. It has become 
customary, in recent years, that many airframe compo–
nents are designed and produced from composite mate–
rials. One type of composite material used in the aero–
space industry is glass fiber embedded in resin (usually 
epoxy matrix). This material has been used in airframes 
since the 1950s (Boeing 707), where the complete struc–
ture contained 2% of composites. Nowadays, this number 
is much higher and goes to more than 50 % on modern 
designs like Boeing 787 (50% composites, 20% alumi–
num, 15 % titanium, 10% steel, and 5% other materials). 
Apart from glass-based composites, carbon fiber embed–
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ded in the epoxy matrix is another popular and very 
efficient composition used in aerospace. As an example, 
the modern Airbus 350 is manufactured, con–taining 53% 
carbon-composite, which resulted in a 25% reduction in 
operating costs, fuel burn, and CO2 emissions. 

 
Figure 1 Application of composites on military and civil 
aircraft [1] 

Analyzing the data presented in Figure 1 and given 
in [1], it undoubtedly can be concluded that the 
application of composite systems on airframes is on the 
rise when modern designs are in question. Based on the 
same data, another intriguing point is worth 
investigating. At the beginning of the application of 
composites in the aerospace industry, military aircraft 
contained a much higher percentage of composites 
compared to civil aircraft. In the modern era, this has 
changed. Based on the data presented in [1], it can be 
concluded that civil aircraft, in terms of a composite 
application, precede military applications. Furthermore, 
the steep gradient of composite applications in civil 
aircraft applications is evident, especially in the new 
millennium. Hence, it is worth analyzing these materials 
in the realm of stability of plates and shells investigated 
in this paper. 

In the conclusion of the introductory part, it is worth 
mentioning new, emerging, and fabrication techniques. 
A group of fabrication techniques where parts are 
fabricated in a layer-wise manner from digital files 
(usually directly obtained as input from a variety of 
CAD systems or 3D object scanners) is referred to as 
additive manufacturing. Instead of milling a workpiece 
from a solid block, additive manufacturing builds the 
part layer-by-layer from the material supplied. In recent 
years, additive manufacturing techniques have 
constantly been improving and are the research focus of 
many companies’ researchers and OEMs. The 
introduction of additive manufacturing technology has 
impacted many manufacturing processes since many 
designs can now be simplified and the prototyping 
timelines considerably shortened. On the other hand, the 
application of additive manufacturing techniques has 
changed the way parts are assembled, and complex part 
design has been greatly simplified.  

In recent years, additive production technologies 
have improved significantly, increasing the possibility 
that 3D-printed mechanical systems elements will be 
transferred from research areas into manufacturing and 
production processes. The aerospace industry was one 
of the first to implement additive manufacturing in the 
design and production process. 

A variety of different polymers are available in 
filament form and are suitable for 3D printing. For 
general use, the most popular polymers are Polylactic 
acid (PLA), Acrylonitrile butadiene styrene (ABS), 
Polyethylene terephthalate (PET), Nylon, Thermoplastic 
elastomer (TPE), and Polycarbonate. For more 
advanced use, also available in filament form are 
PLA/Carbon blend, Polypropylene, Acetal, Polymethyl 
methacrylate (PMMA), and Fluorene Polyester (FPE). 

PLA represents one of the most popular 3D printing 
materials, mostly because of its availability, price, ease 
of handling, and relatively good characteristics. For 
most extrusion-based 3D printers, PLA is the standard 
filament of choice because it requires low temperatures 
and does not require a heated bed. Furthermore, PLA is 
inexpensive, and manufactured parts can be used for a 
wide variety of industrial applications. From an 
ecological point of view, PLA is one of the most 
environmentally friendly materials on the market. The 
advantages of PLA are low cost, stiffness, relatively 
good strength, good dimensional accuracy, and good 
shelf life, whereas disadvantages can be summarized as 
low heat resistance, the need for cooling fans during 
manufacture, the filament can get brittle and break, and 
UV sensitivity. 

Over the last few years, especially in the prototyping 
phase of drone design, unmanned aerial vehicles, and 
unmanned aircraft systems design and prototype 
manufacture, fused deposition modeling techniques 
based on thermoplastic filament material have been very 
often used. Many researchers have focused in recent 
years on determining the physical and mechanical 
properties of FDM-manufactured parts of flying 
vehicles, as well as their respective tensile strengths and 
failure modes. In this paper, the aeroelastic stability of 
tapered PLA and thin composite plates exposed to axial 
subsonic flow is analyzed. Plates are created using 3D 
printing technology and PLA filament. 

 
2. ANALYSIS MODEL 

 
In this section, and bearing in mind the objective to 
determine the effect of the aspect and taper ratio, of 
plates and shells, on their stability, known models for 
torsional divergence, flutter, and missile stability are 
used. These models used in the analysis in this work are 
modified, in that respect, to take into account the 
orthotropic material properties based on the existing and 
accepted theories primarily for composite structures. To 
estimate the impact of the geometry and change of the 
plate, resulting in aspect and taper ratio change, on plate 
stability, a set of equations is used, which are presented 
in the following text. 
 
2.1 Dynamic aeroelastic equations for flutter 

 
Flutter represents a very complex phenomenon. From 
the point of flutter speed estimate, throughout history, 
many modeling approaches have been attempted. As it 
was mentioned in the earlier text, it has been 
investigated since the early days of flight. At that time, 
many flutter speed equations had been developed. As 
an example, Kussner (1929.) found that for lifting 
surface flutter occurs when: 
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0.9 to 0.12
2

ckcr U
ω ⋅

= =
⋅

 (1)  

Equation (1) represents the well-known Kussner’s 
formula, where ω represents the fundamental frequency 
of oscillations of a lifting surface in torsional 
oscillations in still air, U is flow mean speed, and c is 
chord length. The practical use of the presented 
equation can be interpreted in the following way: To 
prevent flutter from occurring, the reduced frequency 
should be significantly higher than kcr value (equation 
1). Based on that, Kushner’s flutter criterion reads: 

2
cUcr kcr

ω ⋅
=  (2) 

In equation 2 Ucr represents the critical flutter speed, 
expressed in terms of fundamental torsional frequency, 
critical value kcr computed from equation 1 and lifting 
surface chord. 

Another approach, suggested by R.H Ricketts [2]at 
the National Aeronautics and Space Administration 
agency, suggests that against the flutter following 
relation must be satisfied: 

( )
VFFSI

b ω μ
=

⋅ ⋅
 (3) 

In this relation, where VF is the flutter speed, b is the 
length of the semi-chord at the three-quarters, ωisthe 
natural frequency (radians per second) of the torsion 
mode, and µ is the ratio of the wing weight to the 
weight of the volume of air in a frustum of a cone 
enclosing the wing. The "three–quarter" semi-chord 
span is a known approach in aeroelastic analysis, and it 
is referred to as the "typical section approach"[3-6]. It is 
recommended that FSI is approximately equal to 
one-half at all altitudes of flight. 

Based on a binary model (2 DOF, plunging h and 
twisting θ), depicted in Figure2, the flutter velocity VF 
can be expressed using equation 4. A detailed 
explanation of this flutter model is given in[7]. 

 
Figure 2. Flutter binary model 

For the presented system of 2 DOF, using energy 
principles, in order to derive the equations of motion, 
expressions for kinetic and potential energy, in terms of 
plunge and twist degrees of freedom, with the artificial 
damping term (D)can be expressed in the following 
form: 
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Using the Lagranges principle leads to the equations 
of motions of the presented system: 
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 (5) 

In the previous relation, Rz(t) and MT(t) are 
aerodynamic forces and moments consecutively, with 
artificial damping for structural and fluid damping 
included and denoted as gh and gα, respectively. The 
natural frequencies (modes) of the system analyzed are 
given as ωh (bending) and ωα. (twist). Inertial 
characteristics of the lift surface section (Figure 2, 
moments of inertia) are Ik and Sk. 

For the Quasi-steady flows, aerodynamic force is 
presented in the following form: 

2
0

1( ) ( )
2z LR t C t V cα α ρ= − ⋅ ⋅ ⋅ ⋅  (6) 

Based on this model, the flutter velocity, in terms of 
natural frequencies, flight conditions, and geometric 
surface parameters, is expressed: 

( )2 2 2 2

( )
8

h
F h

L a

c r
V U

C x
α α

α
α

π μ ω ω
ω ω

−
= = =  (7) 

Frequencies, ωh, and ωα are the bending and twisting 
natural frequencies of the plate, rα is the radius of 
gyration about the mid-chord, and μ is the dimen–
sionless plate airstream mass ratio. The lift coefficient is 
denoted as CLα, which depends on the airfoil shape and 
the angle of attack α with the included condition that 
flutter (stability loss) occurs when bending and twisting 
frequencies coalesce, or in mathematical form: 

( )hαω ω=   (8) 

The unsteady solution of equation (5) is obtained by 
using one of the unsteady subsonic theories where the 
aerodynamic force and aerodynamic moment are expre–
ssed in the following form: 
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In the previous equation, the value of circular 
function C(k) is given using the following relation and 
as a function of reduced frequency denoted as k: 

(1 10.6 ) (1 1.774 )(k) (1 13.51 ) (1 2.745 )
i k i kC i k i k

+ ⋅ +=
+ ⋅ +  (10) 

In this paper, another flutter model used to estimate 
taper and aspect ratios of plates and shells on the overall 
stability is proposed by the National advisory committee 
for aeronautics. This is presented in technical note No 
4197. Based on this, flutter boundary velocity for lifting 
surfaces is defined in the following form. 

( )

2

3

3 0

39.3 1
2

2

FV G
a A p

pt A
c

λ
⎛ ⎞ =⎜ ⎟
⎝ ⎠ ⎛ ⎞⋅ +⎛ ⎞ ⋅ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎛ ⎞ ⋅ +⎜ ⎟
⎝ ⎠

 (11) 

In this relation, VF is flutter speed, a is the speed of 
sound at flight altitude, G is the material shear modulus 
of elasticity, t is plate thickness, p/p0 is the ratio of the 
pressure to standard pressure, and A and λ are aspect 
and taper ratios. 

The modern approach to flutter speed predictions 
requires a numerical approach, and algorithms are very 
well established. This is known as Computational 
Flutter Analysis (CFA). The basis of this approach 
relies on the application of known K, P-K, and PKNL 
algorithms[8-10]. Many commercial software modules 
implemented these algorithms, like ZONA aero and 
Nastran. The CFA procedure requires the construction 
of a structural model, which is by splines connected to 
the aerodynamic model. The unsteady aerodynamics 
models are generally used. From the aerodynamics 
model, loads are transferred to the structure using the 
spline model), which is flexible, and hence since the 
deformed structure changes the load, the newly 
deformed structure with the corresponding changed load 
is analyzed at every iteration as elastic. In the CFA 
approach, the flutter is assumed to occur when the 
structural damping is zero. Based on the research 
reported in [7], it was found that this approach is the 
most accurate and renders the result very close to 
experimentally obtained in wind tunnel tests performed 
for subsonic flows. However, the CFA approach is 
tedious, time-consuming, and requires very high CPU 
resources. In this research, the CFA approach is used for 
results verification of previously mentioned models, 
especially for the plates with low to moderate aspect 
and taper ratios. 

 
2.2 Torsional Divergence Model 

 
Taking into account the mutual effects of elastic and 
aerodynamic forces, static aeroelastic phenomena 
known as divergence are investigated in this section. 
Lifting surface torsional divergence is the most common 
divergence phenomenon that occurs when the lift 
surface e local angle of twist increases (rotates) to the 
point where structural failure is certain due to increased 
stress beyond allowable stress limits (material 

constraints). This arises when the aerodynamic lifting 
forces on a structure generate a moment that twists the 
lift surface about its shear centers. As a result of this 
twisting action, the local angle of attack is increased. 
With the increased angle of attack, more lift is 
generated, which in turn produces more twists. At a 
certain point, the aerodynamic forces and the elastic 
forces will reach equilibrium, or the elastic forces will 
not be capable of sustaining this increase, and hence the 
failure of the structure is definite. The speed at which 
described phenomena is exhibited (failure point) is 
referred to as divergence speed.  

As in dynamic aeroelasticity, several models exist 
for divergence speed estimates and can be found in the 
literature [11-13]. Furthermore, apart from theoretical 
approaches (such as the "typical section method"), 
divergence speed can be determined experimentally or 
by a combination of analytical and numerical models 
described in the following text. The model used in this 
research is depicted in Figure 3: 

 
Figure 3. Torsional divergence model 
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 (12) 

The solution to the above divergence equation in this 
research is regarded as follows: 

The differential equation for the equilibrium 
condition of the differential fin element about the shear 
center, presented for convenience, can be expressed as: 

( ) ( )

( ) ( )

2

2

, ,

d dF y F y
dydy

A y V B y V

θ θ

θ

′⋅ + ⋅ +

+ ⋅ =

 (13) 

Where by comparison, one may conclude that in the 
previous equation, variable coefficients are: 
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Assuming the solution in the form: 

( ) ( )
1

N

i i
i

y a yθ ϕ
=

= ⋅∑  (15) 

And functions ( )i yϕ  are chosen to satisfy 
initial conditions: 

( ) ( )0 0, 2 0i i bϕ ϕ′= =  (16) 

Using Galerkin's method [14-15] for error 
minimization of the assumed solution for the differential 
equation (eq. 8), it follows: 
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∫
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Theoretically, torsional divergence when: 

( ), Dy Vθ → +∞  (18) 

Which can be regarded as a divergence condition. 
Using this approach, the analysis assumes the flight 
speed (within the flight vehicle flight envelope), and 
using a numerical approach solves the divergence 
equation for the guessed estimated speed, which is 
usually done by incrementing the speed values. The 
lifting surface and sectional rotational field are obtained 
(Figure 6.). With the speed increase, it is expected that 
the surface section rotations increase as well. The speed 
at which the divergence condition is met and section 
rotation approaches infinity is considered divergence 
speed (VD) 

For further reference, Table 2 contains applicable 
formulas for torsional constant calculations (required in 
differential divergence equation) for typical lifting 
surface designs (two spar wings (A), airfoil cross-
section (B), and flat plate surface (B)).  

In the case of two spar wings, for calculating the 
cross-sectional torsional constant J, the analyst, with 
great accuracy (within 6%), can include spar walls and 
top and bottom skins. The formula for that particular 
case and with this approximation is given in Table 2, 
section A. This concept is presented in Figure 4. 

For the lifting surfaces, designed as a solid in a 
shape of an airfoil, a sectional torsional constant can be 
calculated using the formula given in Table 2, section B. 
It is worth noting that mentioned formula renders 

approximate values for this type of cross-section, 
whereas more accurate results can be obtained using 
relations based on the Theory of elasticity. The formula 
stated in Table 2, section B is derived based on the 
approximation that the airfoil shape (valid for thin 
airfoil) is approximated by the elliptic relation: 

 
Figure 4. Wing-spar, calculation of torsional constant / per 
section using formula in Table 2. 
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24( ) 1 yb y b
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⎡ ⎤⎛ ⎞
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Solution of the integral for torsional constant J in the 
form: 

/21 3( )
/23

a
J b y dy

a
= ⋅

−∫  (20) 

In previous relations, y denotes the lift surface 
variable span coordinate, b is the maximum thickness of 
the airfoil a is the chord length. The solution of the 
integral (19) leads to the airfoil section (approximated) 
torsional constant. 

For the flat plate cross-section (theoretical lift 
gradient of 2π/rad), the torsional constant formula is 
given in Table 2, section C, and also represents the 
approximate expression, with an acceptable degree of 
accuracy in the analysis of lifting surface torsional 
divergence problems. 

Based on what was previously said and based on the 
model presented, using Galerkin's approach, it is 
possible to obtain the rotational displacement field of 
the lifting surface for typical air-worthy designs. It is 
always convenient to present the results in a graphical 
form, as presented in Figure 6. On the ordinate, the 
value of section rotation is given, and section location 
(measured from the root, clamp) is given on the 
abscissa. This graph, as presented, is given for the 
guess-estimated flight speed within the flight envelope; 
analyzing the condition given by the relation (17), it can 
be concluded that this is a theoretical value of 
divergence speed, where in practice, the failure of the 
structure is expected to occur before  

Once the rotational field has been calculated, using 
the sectional rotations, and in order to obtain more 
realistic values for divergence speeds for a particular 
configuration and take into account material properties 
and stresses developed in the loaded structure, a finite 
element model of the structure analyzed can be created 
where the boundary conditions can be created from the 
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rotational displacement field previously calculated. The 
rotational displacement field (known) is recalculated to 
linear section vertical displacements (Figure 5) and 
imposed at the locations (corresponding location span-
wise) of the lifting surface. 
Table 1 torsional constants formulas for typical cross-
sections 
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316
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⎛ ⎞
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⎜ ⎟
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Figure 5. Sectional rotational field 

Assuming small rotations, the angle θ is 
approximately equal to the tangent of the angle, which 
is equal to the sum of the displacements, Δl and Δ2, 
divided by the chord distance apart (Figure 6). 

 
Figure 6. Sectional rotational field 

At the lifting surface, selected chords previously 
calculated displacements of leading and trailing edges 
are imposed as boundary conditions (enforced disp–
lacement), as it is shown in Figure 7. 

Based on this model stress-strain field can be 
calculated, which renders the information about stress 
magnitude in the loaded structure as a function of the 
flight speed.  

 
Figure 7. Section rotational displacement field boundary 
condition (solid airfoil cross-section) 

Theoretical divergence speed criteria, given in rela–
tion (18), can be transformed to include stress cri–terion 
or strain criterion.  

( )
max, max

max, max
, Dy V

σ τ
θ ε γ

⎡
⎢≤
⎢
⎣

 

   (21) 

Maximal stress and strain values in relation (21) are 
materially constrained, whereas the displacement field 
is governed by overall flight vehicle design (lifting or 
control surface deformation). 

Torsional divergence speed, based on the "typical 
section" approach, assumes that the divergence will 
occur when the following is satisfied: 

2
D

z

C
V

dC S e l
d

θθ

ρ
α

⋅
=

⋅ ⋅ ⋅ ⋅
  (22) 

In the previous relation, the term Cθθ is the torsional 
stiffness of the structure usually obtained by experi–
mentation. The structure is loaded with the known twis–
ting moment, and the displacement of the leading and 
trailing edges is measured. Based on the twisting rela–
tion, the stiffness can be calculated. The schematics of 
the torsion fixture applicable for this test are given in 
Figure 8. 

 
Figure 8. Loading fixture for applying moments 

2.3 Material Model 
 

As can be seen from the analysis of existing flutter 
models and computational approaches in the previous 
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section, material characteristics play an important role 
in aeroelastic analysis (static and dynamic). On the 
other hand, composite materials manufactured in the 
form of plates and shells are of particular interest and, 
as was seen previously, are often used in airframe 
construction. 

In any structural problem, Generalized Hooke’s law 
is used. Stresses to strains are related through a stiffness 
matrix whose elements are elastic coefficients depen–
dent on material characteristics and usually obtained by 
experimentation. 

In composite analysis terms, the ABD matrix is 
often used. The 6x6 matrix known as ABDserves as a 
relation between the applied loads and the associated 
strains in the laminate. It defines the elastic properties of 
the laminate [16-17]. Submatrix B in the ABD laminate 
matrix is the coupling term between axial and shear 
components. It is possible to produce laminate in such a 
way that the B submatrix is zero; hence in these 
laminates, the above-mentioned coupling does not exist. 
This is the case with symmetric and quasi-isotropic (QI) 
lay-ups. Symmetric laminates are laminates where lay-
up is symmetric with respect to the neutral surface. This 
symmetry condition must be satisfied for both geometry 
and material properties. Several typical symmetric 
laminate lay-ups are presented in Figure 3.  

 
Figure 9. Flutter binary model 

Quasi-isotropic (QI)is of great interest in the initial 
phases of the design. A quasi-isotropic laminate is 
attained when the laminas are oriented in such a way as 
to produce an isotropic [A] submatrix. The coefficients 
A16 = A26 = 0, and the extension and shear are unco–
upled. In this lay-up, the components of [A] are inde–
pendent of laminate orientation, and for the quasi-iso–
tropic laminate, the stack-up must satisfy the following 
relation: 

( )
0 0

0 180 1800 / ... 1
⎡ ⎤

−⎢ ⎥
⎢ ⎥⎣ ⎦ns

m
m m

  (23) 

Number m represents the number of different 
orientations in the laminate and is the number of 
repetition sequences. This stack-up lamina combination 
excludes coupling effects. Composite (in-plane) stiff–
ness is independent of composite orientation, which is 
the main reason why this type of stack-up is often used 
as the starting point, bearing in mind the great number 
of variables (fiber type, matrix type, volume fractions, 
fiber orientation…) when designing with composites. 

This is one of the reasons why this stack-up is 
considered in the preliminary stages of design and is 
further improved to achieve the optimum[18-19]. The 
optimal design for composite airframes is usually done 

using a numerical approach, and at present days several 
optimization algorithms have been implemented into 
software modules, Hypersizer software developed by 
NASA being one of them. The objective function is 
usually mass reduction obtained by fiber orientation 
rearrangement and lamina thickness optimization. 

Following the works of Akkerman et al., for QI 
laminates[20], the in-plane (x-y shear plane) shear 
modulus of QI laminates is expressed in the following 
form: 

( )1 1 2 12 2
12 2

1 12 2

21 1
2 8 2

υ

υ

⋅ + −
= ⋅ +

−
xy

E E E E
G G

E E
 (24) 

In the equation for shear modulus, Youngs’ moduli 
(E1, E2) and Poisson ratio (ν12) can be obtained using 
composite micromechanics theories [6], provided that 
the mechanical characteristics of composite phases (fi–
bers, matrix, and void content) are known, and are 
usually obtained from the original component manufac–
turer. In this paper, the Akkerman equation for QI 
laminates is used for flutter velocities predictions for 
flutter velocities in cases where the NACA boundary 
equ–ation (equation 4) is used for analysis.  

For typical lamina, with respect to fiber volume 
fraction, values for essential elastic coefficients for 
carbon/epoxy, glass/epoxy, and PLA are given in Table 
2. for reference. 
Table 2: Typical lamina properties for different systems 

 ρ 
[g/cm3]

d 
[µm]

Vf 
[-] 

E1 
[GPa] 

E2 
[GPa] 

G12 
[GPa] 

ν12 
[GPa]

E-
Glass / 
Epoxy

2.10 16 0.55 39 8.6 3.8 0.28

Carbon 
/ 
Epoxy

1.58 6.5 0.63 142 10.3 7.2 0.27

PLA 1.24 (Raster 
dep.) 

(3D 
Print) 4.4 4.4 (Calculated) 0.3 

 
2.4 Modal Analysis 

 
The determination of modal frequencies required in all 
dynamic aeroelastic analyses can be determined by 
experimentation, analytics analysis, and numerical 
analyses. In this research, both analytic and numerical 
approach is deployed, followed by experimental 
verification. 

First, considering the thin plates and shells analyzed, 
from the stability of view, the Rayleigh-Ritz approach is 
used. It is considered that the plate analyzed is 
cantilevered. This can be regarded as a wing attached to 
a fuselage or a fin to a missile body. According to 
Rayleigh-Ritz theory, for a cantilevered beam, 
fundamental frequencies of oscillations are given in the 
following form[14]: 

2
n

n
D

b t
λ

ω
ρ

=
⋅

  (25) 

In this relation,n represents the mode number of 
oscillation, and Coefficients λn are the function of 
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boundary condition, material type, and analyzed plate 
taper ratio. Coefficients λn for the first two modes 
(bending and twisting) for isotropic materials as a 
function of taper ratio (tip chord/root chord) are given in 
Table3. 
Table 3: Isotropic material Coefficients  

Ctip / Croot Mode 1 λ Mode 2 λ 
2 3.51 5.37 
1 3.49 8.55 
0.5 3.47 14.90 

 
In order to adequately apply Rayleigh-Ritz theory 

for orthotropic materials (composites), recalculation of 
coefficients is required. In this analysis, and bearing in 
mind composites as a building block of airframes, by 
performing FEA (finite element analysis - modal) for 
carbon-based and E-glass-based composite systems, and 
cantilevered components λn coefficients required in the 
previous equation can be obtained from the following 
equations: 

1
0.736

2

0.0257 3.46

8.8113

A

A

λ

λ

= ⋅ +

= ⋅
 (26) 

In equation (25) ρ is the material density, and D is 
plate flexural rigidity computed from the following 
relation: 

( )
3

212 1 υ

⋅
=

−

eq

eq

E t
D   (27) 

In the previous relation, EEq represents the Equi–
valent modulus of elasticity(Young’s modulus of 
elasticity.), and D is plate rigidity. The same applies to 
Poisson's ratio in the same equation. As QI laminates of 
primer interest in this research, the equivalent modulus 
of elasticity can be calculated from the isotropic 
relation: 

( )2 1 υ= ⋅ + ⋅eq xy xyE G
 

 (28) 

The shear modulus required by the previous 
relationship can be calculated using equation 7, whereas 
Poisson’s ratio is set to 0.3 for the preliminary analysis. 

 
3. RESULTS AND DISCUSSION 

 

Based on the models presented in the previous text, 
static stability and dynamic stability of tapered are 
analyzed for the different taper and aspect ratios [21-
22]. The taper ratio was varied from a starting value of 
0.5 to a value of 1 (square plate). The aspect ratio 
analyzed was from 0.5 to 2. For all geometries analyzed, 
results are presented in Table 4. 

Based on the results obtained for flutter velocities 
using the NACA boundary equation and unsteady flutter 
model presented in the previous section, it was found 
that the Naca boundary equation gives better results for 
low aspect ratios, whereas for moderate to high aspect 
ratios, unsteady flutter equation renders results closer to 
experimentally obtained velocities in a subsonic wind 

tunnel [7]. The original flutter boundary equation used 
to estimate the flutter velocities for low aspect ratios 
and for orthotropic structures (composites) was modi–
fied in that respect, that elastic coefficients (material 
shear modulus) are calculated based on the relation (7) 
and incorporated in the original equation. The modified 
equation is given in the following form: 
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∫  (29) 

It is worth noting that this equation used in the 
orthotropic form (valid for QI lay-up), is also without 
change applicable to isotropic materials (metals) since 
for these types of materials, Young's moduli are 
equivalent (E1 = E2) and all material isotropic relations 
are valid. For orthotropic materials, the required elastic 
coefficients can be obtained based on Micromechanics 
theories, provided that the phase’s mechanical data is 
available. These are usually obtained either from the 
literature or from the components manufacturer. 

Dynamic stability for different geometries analyzed 
and expressed through flutter velocities is presented in 
the following figures: 

 
Figure 10. Flutter velocity as a function of Aspect and 
Taper Ratio 

Analyzing the results obtained, it was observed that 
increasing the aspect ratio lowers the flutter velocities; 
however, it increases overall stability. For lower to 
moderate Aspect ratios, the taper ratio does not 
significantly influence flutter speeds (Figure 11). For 
low ratios, flutter speeds are the maximum for a 
particular configuration. Flutter models used render 
similar results for moderate ratios. 
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Figure11. Flutter velocity as a function of Taper Ratio 

Using the CFA approach for maximum and mini–
mum ratios, a complete numerical analysis of the flutter 
speeds is performed using MSC Flight-loads commer–
cial software. For the three configurations analyzed, 
results are presented in tables 4-6. 

Based on CFA, for a particular mode (twisting or 
bending), the value of structural damping is analyzed. 
For a frequency of oscillation where the damping term 
turns positive (no damping in a structure), the corres–
ponding velocity is considered a velocity at which the 
loss of stability occurs. Analyzing all modes of oscil–
lation, the minimal value for velocity where damping is 
positive is considered to be the velocity at which the 
loss of stability will occur. This value is further 
compared to envelope data and applicable standards. 

In all analyses performed in this study, the thickness 
is kept constant. There is no doubt that the thickness 
highly affects the flutter speed. With the increase in 
thickness, the flutter speed increase. Detailed analysis of 
thickness effects on flutter speed is given in [4]. 

The divergence speeds have been calculated for dif–
ferent geometries given in Table 4. The methodology 
used for divergence calculation is described in the 
previous text.  

For particular configuration values for a torsional 
contant (J) have been calculated for a number of 
sections along the span (for a particular chord length at 
that location) and then used to approximate the J(y), 
where y is the span, with a Second-Degree Polynomial 
Function. 

It was found that torsional divergence speeds are 
higher, compared to flutter speeds, for the same struc–
tural configuration. However, they have to be calculated 
since they give a good insight into the overall structure 
stiffness and are required by many standards currently 
in use. 

The overall stability is estimated for all confi–
gurations analyzed. The aerodynamic characteristics 
considered are the normal force coefficient derivative, 
the center of pressure, the roll forcing moment coef–
ficient derivative, the roll damping moment coefficient 

derivative, the pitch damping moment coefficient 
derivative, and the drag coefficient. For a typical confi–
guration and for varying different geometries of the 
stabilizing surfaces (geometries with respective dimen–
sions are presented in Table 4), results for the drag 
coefficient (Cx) and Stability coefficient as functions of 
aspect and taper ratios are presented in Figure 12 and 
Figure 13. 

It can be seen that the increase in aspect ratio inc–
reases the stability coefficient; however, with the inc–
rease of aspect and taper ratio drag coefficient increases 
(Table 4.). Results for drag coefficient, as a function of 
aspect and taper ratios, are given in Fig. 13. 

 
Figure 12. Stability coefficient as a function of taper and 
aspect ratios 

 
Figure 13. Drag coefficient as a function of taper and 
aspect ratios 

The effect of material on flutter speeds for E-glass / 
Epoxy and Carbon /Epoxy is analyzed. Results are pre–
sented in Figure 14 in the form of a V-g diagram (speed 
versus damping). Material stiffness directly influences 
the flutter speeds. In composites, also the lay-up has a 
great impact on the speed. This needs further investi–
gation.
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Table 4 Results Summary 
 

 

AR= 0.5 AR= 1 AR= 2 

λ= 0.5 

Model 1 Model 2 Model 3 
H = 67.5 [mm] H =135 [mm] H = 270 [mm] 
CR = 180 [mm] CR = 180 [mm] CR = 180 [mm] 

CT = 90 mm CT = 90 mm CT = 90 mm 

 
  

Cav = 140 [mm] Cav = 140 [mm] Cav = 140 [mm] 

 
 

 
Stability 2.59 [cal] Stability 4.46 [cal] Stability 4.69 [cal] 

Cx = 0.94 [-] Cx = 1.23 [-] Cx = 1.61 [-] 
VF =93.8 [m/s] VF =36.9 [m/s] Vf =14.73 [m/s] 

Δ =127623 [rad/s]2 Δ =49050 [rad/s]2 Δ =10145 [rad/s]2 

λ= 0.7 

Model 4 Model 5 Model 6 
H = 76.5 [mm] H = 153 [mm] H = 306 [mm] 
CR = 180 [mm CR = 180 [mm] CR = 180 [mm] 
CT = 126 [mm] CT = 126 [mm] CT = 126 [mm] 

  
 

Cav = 154.59 [mm] Cav = 154.59 [mm] Cav = 154.59 [mm] 

 
 

 
Stability 3.12 [cal] Stability 4.43 [cal] Stability 4.85 [cal] 

Cx = 1.03 [-] Cx = 1.28 [-] Cx = - 
VF =87.53 [m/s] VF =33.9 [m/s] VF =13.84 [m/s] 

Δ =123125 [rad/s]2 Δ =37572 [rad/s]2 Δ =7506 [rad/s]2 

λ= 1 

Model 7 Model 8 Model 9 
H = 90 [mm] H = 180 [mm] H = 360 [mm] 

CR = 180[mm] CR = 180 [mm] CR = 180 [mm] 
CT = 180[mm] CT = 180[mm] CT = 180[mm] 

  
 

Cav =180[mm] Cav =180[mm] Cav =180[mm] 

 
 

 
Stability 3.41 [cal] Stability 4.33[cal]  Stability 4.72 [cal] 

Cx = 1.09 [-] Cx = 1.40 [-] Cx = 2.45 [-] 
VF =80.7 [m/s] VF =31.25 [m/s] VF =12.76 [m/s] 

Δ =102479 [rad/s]2 Δ =26181 [rad/s]2 Δ =5056 [rad/s]2 
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Table 5 CFA Results for AR=λ=0.5 
 

 
 
Table 6 CFA Results For AR=0.7 and λ=0.5 
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Table 7 CFA Results For AR=1 and λ=0.7 

 

 
Figure 14. Effect of material on flutter speeds, EGlass/Epoxy and Carbon Epoxy 

 
4. CONCLUSION  
 
The effects of taper and aspect ratio of thin plates and 
shells are investigated from the static and dynamic 
stability point of view. These structures are the building 
block of any modern flight-worthy airframe, and 
stability is of great concern and has to be performed 
even in the early stages of the design. 

If modern composite materials are used, current and 
existing theories for static torsional divergence pheno–
mena and for dynamic flutter have to be modified in 
order to take the material anisotropy into account since 
it was found that material characteristics highly 

influence the flutter and divergence speeds. Ackerman 
QI theory for composite plates is used and presented in 
this paper. It can be concluded that this approach 
renders relatively good results for torsional divergence 
speeds and flutter speeds and is less computationally 
involved when compared to the CFA approach. Further, 
based on this analysis, it can be concluded that the 
methodology for stability analysis, for both static and 
dynamic, presented can be used in the preliminary 
stages of the design and used with relatively moderate 
computational expenses. Variations in aspect ratios of 
the tapered plate highly influence the overall stability, 
whereas the variations of the taper ratio influence the 
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stability as well to a lesser extent. If the structures are 
designed from modern composite materials, a greater 
number of material characteristics have to be 
considered, which requires more complex analytic and 
numeric analyses; however, this potentially leads to 
more efficient and more optimal airframe designs. 

Optimization of the structures analyzed in this paper, 
due to a great number of parameters, represents a chal–
lenging task and is a recommendation for future work. 
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АНАЛИЗА УТИЦАЈА ВИТКОСТИ И СУЖЕЊА 

НА АЕРОЕЛАТИЧНУ СТАБИЛОНСТ 
КОМПОЗИТНИХ ЉУСКИ 

 
М. Динуловић, Б. Рашуо, Н. Славковић,  

Ђ. Карић 
 

У овом раду анализирана је статичка и динамичка 
стабилност, за различите аеродинамичке 
конфигурације композитних плоча. На основу 
посојећих модела за флатер и торѕиону 
дивергенцију, модификованих како би била узета у 
обзир анизотропија материјала, коефициејнти 
стабилности су израчунати за различите виткости и 
сужења узгонских и управљачких површина. Може 
бити закључено да је приказана методологија веома 
ефикасана нарочито у прелиминарним фазама 
пројеката када је потребно изанлизирати велики број 
потенцијалних конфигурација са аеродинамичког 
аспекта за различите случајеве лета. 

 
 


