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The Influence of Temperature Gradient 
on Thin Plates Bending  
 
Within the theory of thermo-elasticity, the temperature field of thin plates 
is commonly defined via two parameters: temperature in the mid-plane and 
linear temperature gradient normal to the mid-plane. First, the paper 
analytically proves the justification of that assumption in machine 
structures. Then, in an analytical closed form, applying the integral 
transformation method, the thin plate deflection caused by a constant 
temperature gradient is defined. It is shown that, in that case, the plate 
deflection does not depend on its thickness but only on the plate 
dimensions in the mid-plane. Analytically defined values are compared to 
corresponding values obtained by applying the thin plate finite element, 
where the temperature field is described using the two mentioned 
parameters. This finite element is defined and programmed within the 
Komips program package. The influence of the temperature gradient on 
the behavior of constructions mostly depends on the type of material. That 
is why the behavior of some structural elements made of brass, steel, and 
concrete is analyzed in this paper.  
 
Keywords: temperature, temperature gradient, plate, deflection, stress, 
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1. INTRODUCTION  
 

A large number of machine structures, such as steam boi–
lers, heat exchangers, furnaces, chemical reactors, evapo–
rators, engine parts, etc., represent thermally loaded struc–
tures of complex geometry. In the design and analysis of 
this type of structure, the finite element method is mai–nly 
used today. Due to the complexity of the geometry, 2D and 
3D finite elements are mostly used to create calcu–lation 
models, which are assigned a thermo-mechanical load.   

The analysis of stress due to pressure and thermal 
loads in structures such as fire-tube boilers shows that 
thermal stress is not of lower order compared to stress 
due to pressure loads [1,2]. The effects of the surface 
roughness of the friction facing the generated heat and 
temperature fields are investigated in [3]. A finite element 
model was developed to study the thermal be–havior of a 
disc clutch system. The importance of rese–arch [4] is 
given to the variation of temperature along the length of 
the fins. The presented methodology in–volved 3D 
rectangular fin modeling and the creation of surf elements 
for applying the boundary conditions and source 
temperature obtained in the state of thermal contours.  

In some processes, such as the laser formation of 
thin plates, the temperature gradient mechanism is very 
important. Laser forming is a technique that forms sheet 
metal by means of induced non-uniform thermal stress. 
So, in paper [5], the temperature gradient mechanism is 
studied to obtain the deformation of a plate in the laser 
forming process. Thermal stress is significant in 
welding processes, too, and in [6], a mathematical 

model was developed to predict the temperature distri–
bution and stress concentration at localized nodal points.  

Thermal load acting on thin plates can provide their 
bending, buckling, and curling. A theoretical model for 
the nonlinear analysis of thin rectangular plates sub–
jected to mechanical load and to non-uniform thermal 
gradients is discussed in [7], and several numerical 
examples are presented. The influence of thermal gra–
dient is very significant in the analysis of structures with 
low heat conduction coefficients, such as structures of 
silicon materials or concrete. Thermoelastic vibrations 
of functionally graded plates of silicon material 
subjected to thermal load are shown in [8]. A finite 
element model for unsteady phased thermal-stress 
analysis of gravity dams made of a special concrete 
mixture with low cement content is presented in [9]. 
Thin-walled plates and tubes were experimentally 
investigated to obtain the effects of thermal loads, and 
appropriate finite element models were developed [10].   

Machine structures are mainly built of steel whose heat 
conduction is comparatively high and amounts to approx. 
50 W/mK. The objective of this paper is first to analy–
tically show that temperature distribution in thin-walled 
structures is mainly linear across their thickness. Therefore, 
for further analysis of thin-walled thermally loaded struc–
tures, the simplest way is to use a 2D finite element for a 
thin plate, which has the possibility of assigning tempera–
ture in the mid-plane as well as tempe–rature gradient nor–
mal to the plate mid-plane. Such finite element was prog–
rammed within the KOMIPS package [11], and its veri–
fication is presented by applying analytical calculations.     

 
2. TEMPERATURE DISTRIBUTION ACROSS THE 

PLATE THICKNESS  
  

A general differential equation of heat conduction for 
uncoupled thermo-elasticity problems reads [12] 
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where κ is the coefficient of thermal intensity, λ is the 
heat conduction coefficient, ∇2 is the Laplace operator, 
and t is the time.  

The temperature field is presented as θ=T-T0 [°C, 
K], where T0 is the plate's temperature in its natural 
state. The quantity of heat generated in a unit volume 
and unit time is presented as ( )t,x,x,xW 321 .  

Observe part of the plate of thickness h as shown in 
Fig. 1. Assume that the plate temperature changes only 
in the direction of axis z and that the temperatures on 
the upper and lower surfaces are constant. Since we are 
interested here only in temperature change across the 
plate thickness, let us choose boundary and initial 
values in the form as follows:   

( ) 00 θθ == t,z ,        
( ) 0== t,hzθ ,  (2) 
( ) hz,t,z <<== 000θ .  

 
Figure 1. Plate of thickness h with constant temperatures 
on the upper and lower surfaces 

The problem of this type is often encountered in 
engineering practice, and a corresponding differential 
equation is of the form 
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In accordance with specified boundary and initial 
conditions, Eq. (3) is analytically solved in the simplest 
manner by applying the finite Fourier sine transfor–
mation of the form 
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after applying this transformation, Eq. (4) has the form 
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where H(t) is the Heaviside function. Applying the 
Laplace transformation defined by the expression   

( ) ( )∫
∞

−=
0

dtet,kp,k pt
s

*
s θθ , (6) 

 the transformed function is obtained 
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Inverse transformations must be applied to obtain the 
analytical closed-form solution. Applying the inverse 
Laplace transformation, the expression obtained is 
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so that the solution of a specified problem in the form of 
infinite order reads 
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Let us perform the analysis of the expression (9). 
Until a steady state is reached, the plate temperature 
changes in accordance with the presented exponential 
law. When the steady state is achieved, the expression 
becomes 
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Let us define analytically the temperature in the 
plate mid-plane (z=h/2). The temperature can be shown 
via a comparatively simple infinite-order 
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The obtained alternative order is convergent accor–
ding to the Leibniz criterion and corresponds to the 
alternative order of the function arctg(x) 
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When a steady state is reached, the temperature in 
the mid-plane equals half of the sum of the temperatures 
on the upper and lower surfaces of the thin plate 
[θ(z=0)+θ(z=h)]/2. Its change is linear.  

A numerical example will be used to show it. Ob–
serve the plate with a thickness of h=100 mm, whose 
lower surface temperature equals the environment 
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temperature, and let the upper surface temperature be 
higher by 8oC. The plate used is steel plate, while 
corresponding characteristics necessary for calculations 
are given in Table 1: thermal conductivity λ, the coef–
ficient of thermal expansion αt, material density ρ, 
thermal diffusion coefficient κ, and Poisson’s ratio ν. 
Table 1. Material characteristics of carbon steel 

λ 
[W/mK] 

αt 
 [K-1] 

ρ 
[kg/m3] 

κ 
[m2/s] ν 

50.2 1.2 ·10-5 7.85 ·103 1.36 ·10-5 0.3 
 
To illustrate the rate of establishing a steady state, in 

accordance with Eq. (9), let us draw a corresponding 
diagram of the temperature change over time across the 
plate thickness. It can be seen from the diagram in Fig. 
2 that after about 4 minutes, a linear distribution of 
temperature is established across the plate thickness, so 
in this case, it does not make any sense to consider a 
dynamic problem.  

 
Figure 2. Temperature changes across plate thickness 
depending on time  

Further calculations will involve the observation of 
the thin plate behavior as influenced by the linear tem–
perature gradient in the quasi-steady state. 
 
3. THIN PLATE DEFORMATION INFLUENCED BY 

LINEAR TEMPERATURE GRADIENT 
 

Analytical calculations of thin plates commonly involve 
introducing the assumption that temperature changes 
linearly across the plate thickness. As shown in the 
previous part of the paper, this assumption is completely 
justifiable for the majority of thermally loaded machine 
structures. Using the Cartesian coordinate system 
presented in Fig. 3, the temperature field ( )t,x,x,x 321θ  
can be described using values τ0 and τ1 as [12] 

( ) ( ) ( )t,x,xxt,x,xt,x,x,x 2113210321 ττθ +=  (14) 

where τ0 [K, oC] is the mid-plane temperature, and τ1 
[K/m] represents the temperature gradient normal to the 
mid-plane. The temperature in the mid-plane causes 
only membrane stresses, which can be most readily 
determined by applying the finite element method. 
Here, only the influence of temperature gradient on the 
thin plate bending will be analytically determined.  

The differential equation that describes the dynamic 
change of the plate deflection (displacement w in the 
direction of axis x3) is shown by the expression [13]   

( ) 0
12

1 2
1

3

1
2
1

4
1 =∇−+∇++∇ whwhDwD t ���� ρρταν , (15) 

where D is a common value of the plate bending stiffness 
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Figure 3. Rectangular plate a×b×h in Cartesian coordinate 
system  

In Eq. (15), the influence of mechanical loads (sur–
face or volume forces) is not taken into account. Since it 
has been already explained that dynamic problems will 
not be considered in this case, Eq. (15) is reduced to a 
simple form 
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2
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Observe a free, supported plate of a×b×h dimensions 
displayed in Fig. 3 and, in accordance with boundary 
conditions, apply a double finite Fourier transformation 
(defined already by the expression (4)). Since 
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Eq. (16) is first reduced to the transformed expre–
ssion 
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and then applying inverse transformations, the solution 
for plate deflection is obtained in the form of a double 
infinite-order 
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The last expression indicates that at a constant tem–

perature gradient τ1, plate deflection does not depend on 
its thickness but only on the dimensions in the mid-
plane.  

 Figure 4 shows the square plate deflection of 
2m×2m dimensions calculated based on Eq. (19) along 
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mid-lines x1=x2=1m for the gradient value τ1 of 
200oC/m. The analytically calculated value of the maxi–
mum displacement in the middle of the plate amounts to 
0.92mm. 

 
Figure 4. Deflection of the square plate 2m×2m along 
midlines for τ1=0.2oC/mm 

The theory of thin plates yields expressions for 
maximum stresses in the form [14]: 
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Substituting (19) in expressions (20) gives maxi–
mum stress values in the analytical form  
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Based on expression (21), it is evident that the 
highest normal stresses in a free-supported plate occur 
on its edges. The expression for tangential stress indi–
cates that the stress equals zero for  
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Since n and m are whole odd numbers, tangential 
stresses equal zero along the lines that halve the plate, 
i.e., for 
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Therefore, fig. 5 depicts the distribution of tangential 
stresses only for one-quarter of a considered square 
plate. 

 

[MPa] 

Figure 5. Analytically determined the distribution of 
tangential stresses   

4. THE APPLICATION OF THE FINITE ELEMENT 
METHOD 

 
The thin plate finite element was defined within the 
KOMIPS program package [11], and it was assigned the 
temperature of the mid-plane and the temperature 
gradient normal to the mid-plane. The temperature 
gradient is assigned in the direction of the finite element 
normal line. In order to compare the results obtained 
analytically (19) and numerically by applying FEM, a 
square plate was created of the same dimensions and 
loading as in the previous case.  

Figure 6 shows plate deformation, and in accordance 
with the sign of the finite elements' normal line, a 
gradient of τ1 = - 0.2oC/mm (a normal goes down) was 
assigned.  

 

 

Figure 6. Direction of the finite elements normal line and 
deformation of the square plate 2m×2m  

The finite element method was used to calculate a 
maximum deflection of 0.93 mm, which agrees well with 
the analytically obtained value (the difference is 1%). 

Stress was checked for the plate with four clamped 
edges. Since, in that case, there is no displacement of 
the plate points, the stress obtained by the finite element 
method must agree with the theoretical stress from Eqs. 
(20). For the plate thickness of 100 mm and Modulus of 
elasticity of 210 GPa, normal stress amounts to 

.MPa3622211 === Cσσ   
Since agreement between analytical and numerical 

calculations has been proved, only numerical calcu–
lations (being faster and simpler) were used for further 
analysis. The diagram in Fig. 7 shows the dependence 
of maximum deflection on the square plate dimensions 
in the mid-plane.   

Figure 7 depicts the dependence of maximum def–
lection on plate thickness when the same temperature 
difference of 10oC is provided between two plate 
surfaces.   

When the temperature difference between the plate's 
upper and lower surfaces is constant, only the tempera–
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ture gradient changes with the factor h-1 so that the line 
from Fig. 8 corresponds to the hyperbole.  

 
Figure 7. Square plate maximum deflection depending on 
its dimension a for τ1=0.2oC/mm 

 
Figure 8. Square plate maximum deflection a=b=2m de–
pending on its thickness for a temperature difference of 
10oC 
 

5. TEMPERATURE GRADIENT DEPENDING ON 
THE MATERIAL OF THIN PLATE ELEMENTS  

 
Observe the plate of dimensions 1m×1m×100mm with 
clamped edges. Also, observe the cylinder of medium 
diameter d=1m, length l=3m, and thickness δ=100mm, 
also with clamped edges, shown in Fig. 9. Elements of 
plate and cylinder are loaded with the same temperature 
gradient of 200℃/m.  

 

Figure 9. A numerical computational model of cylinder 
supports (boundary conditions) 

Observe the plate and cylinder are made whole of 
one of three materials: reinforced concrete, carbon steel, 
and brass (CuZn30). Material characteristics used in 
calculations are given in Table 2. 

Firstly, observe the method and speed of heating of 
plates when the temperature difference between the 
upper and lower sides is set to 20�. In the diagrams in 
Fig. 10, the mid-plane temperature change for a 
concrete and brass plate is shown. The diagrams were 
obtained on the basis of analytical calculations using 
equation (9). 

 

Table 2. Material characteristics 

Material Concrete Carbon steel Brass 
Elasticity Modulus 

E [GPa] 30 210 100 

Poisson’s coefficient 
ν 0.2 0.3 0.37 

Thermal conductivity 
λ [W/mK] 1.51 50.2 105.8 

Specific heat 
C [J/kgK] 840 470 377 

Material density 
ρ [kg/m3] 2500 7800 8600 

Coefficient of thermal 
expansion 
α [K-1] 

1.2 10-5 1.2 10-5 1.9 10-5 

 

 
Figure 10. The mid-plane temperature change for a 
concrete and brass plate  

A stationary temperature field in a concrete plate is 
established in about 100 minutes, in a steel plate in 
about 4 minutes, and in a brass plate in only about 2 
minutes.  

Since the displacements of the plate with clamped 
edges, loaded in this way, are equal to zero, the exp–
ression for theoretical stress based on equation (21) is  

( ) ,,
Eh t 0

12 12
1

22max11max =
−

== τ
ν
τα

σσ
      

(22) 

which gives a stress of 4.5 MPa for the concrete plate, 
36 MPa for the steel plate, and 30.2 MPa for the brass 
plate. The von Mises stress σeqv by the plane stress 
theory is defined by the following equation  

222
eqv 212121

3 xxxxxx τσσσσσ +−+= , (23) 

so the value of the equivalent stress in this load case is 
equal to the maximum values of the normal stress. 
Calculations performed using the finite element method 
give exactly the same stress values. The same stress 
values are obtained for the cylinder shown in Figure 9.  

If the plate is only freely supported (Figure 11), its 
deformations occur in a way that the maximum 
displacements of the midpoint (obtained using the finite 
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element method) are:  fmax (concrete)=0.2 mm,  
fmax(steel)= 0.23 mm,  fmax (brass)= 0.4 mm. 

If the temperature in the middle plate plane of θ0=50 
� is added to the calculation, the strain and stress values 
are obtained by the finite element method and given in 
Table 3. 
Tabela 3. Maximum deflections and equivalent stresses 

Material fmax Compressive stress 
in plate mid-plane 

Eqv. Stress 
[MPa] 

Concrete 0.211 mm 22.5 MPa 29.7 ÷ 31.2 
Steel 0.286 mm 180 MPa 239 ÷ 248  
Brass 0.382 mm 151 MPa 201 ÷ 208  
 
Using the finite element method, equivalent stresses 

are calculated using the Maxwell–Huber–Hencky–von 
Mises criterion. Stress distribution, as well as 
deformation, is the same in all the plates made of 
different materials and is given in Fig 11. 

 
 

Deflection Normal stress 
distribution 

Shear stress 
distribution 

Figure 11. Deformation. Normal stress distribution and 
shear stress distribution in a thin plate model 

The finite element method calculation of a cylinder 
with clamped edges loaded only with a linear 
temperature gradient for all three materials shows a 
curling tendency. For a temperature gradient of 200℃
/m, the displacements are small, and the appearance of 
the deformed cylinder is given in Fig. 12.  

 
Brass Steel Concrete 

Figure 12. Deformation of a cylinder loaded only with a 
linear temperature gradient  

 
6. SOLVING PRACTICAL ENGINEERING PROBLEM 

USING FINITE ELEMENT  
 
Previous considerations are significant for solving 
geometrically more complex problems when the finite 
element method has to be used. Problem-solving 
commences by defining the temperatures on the plate 
element's upper and lower surfaces.  

At first, observe a flat plate and define heat flux 
based on the expression for heat transmittance through 
flat walls. Let the steel plate be of thickness h=δ=100 
mm and let the air of the temperature of Tf1=120°C and 
velocity of approx. 20 m/s flow over its upper surface, 
and air of the temperature Tf2=20°C and of the same 

velocity flow over its lower surface. Heat transfer coef–
ficients obtained based on an empirical formula amount 
to α1=α2=45W/m2K. Heat flow is calculated using the 
expression (24) [15]   

21

212
11
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αλ
δ

α

ϕ
++

−
= ff TT
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and amounts to 2153W/m2. In that case, the plate's 
upper surface temperature is 72.15°C, and of the lower 
surface, 67.85°C. The mid-plane temperature is τ0= 
70°C, whereas the temperature gradient normal to the 
mid-plane is τ1=43°C/m.  
 For metal structures that have high thermal con–
ductivity λ (steel, aluminum, copper, and their alloys), 
the temperature gradient τ1 has a comparatively small 
value so that it can be neglected in some calculations. 
For all structural parts built of non-metals, the 
temperature gradient is very high, and it is mandatory to 
introduce it in calculations.  

 If the material of the observed plate were rein–
forced concrete or quartz glass, for the same boundary 
conditions, the mid-plane temperature would amount to 
70°C and the linear gradient to approx. 600°C/m, while 
for the plate made of plaster, brick, or concrete, the 
gradient would be approx. 800°C/m.   

In order to more clearly show the importance of the 
material characteristics of the construction on its 
behavior under the influence of temperature, observe the 
already described cylinder whose inner and outer 
diameters are du=0.95 m and ds=1.05 m. Let the air at a 
temperature of Tu=100°C  and at a speed of  vu=15 m/s 
flow inside the cylinder. Let the air at the temperature 
Ts=20℃ and at the speed of vs=2m/s flow at the outer 
side of the cylinder. Heat transfer coefficients αu and αs 
can be determined using empirical formulas, and for this 
case, their values are αu=40 W/m2K and αs=26 W/m2K. 
The heat flux φ [W/m] is calculated based on the 
equation (25) from the literature [15] 
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The temperatures of the inner and outer sides of the 
cylinder Tu and Ts  are calculated and given in Table 4. 
Table 4. Characteristics cylinder temperatures 

Material Concrete Steel Brass 
Inner side 

temperature Tu 
78.08°C 67.1°C 66.8°C 

Outer side 
temperature Ts 

50.51°C 65.75°C 66.2°C 

Middle plane 
temperature τ0 

64.3°C 66.44°C 66.5°C 

Linear temperature 
gradient τ1 

276°C/m 13.8°C /m 6°C/m 

 
When considering the temperature gradient included 

in the numerical finite element method calculation, one 
should take care of the normal direction of the surface 
element. Since in the shown model, the normal of the 
surface element goes outwards, τ1 is considered with a 
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minus sign. In this numerical example, the edges of the 
cylinder are freely supported (in all three directions), as 
shown in Fig. 13. The deformation field has the same 
shape for all considered materials and is given in Fig. 
13, as well as the corresponding values of the maximum 
displacements. 

 
Concrete Steel Brass 

fmax =0.5mm fmax =0.5mm fmax =0.9mm 

Figure 13. Deformation of the cylinder under the thermal 
loading 

Figure 14 shows the equivalent stress distribution 
field as well as von Misses stress values for all three 
cases. It is clear that the stresses are the highest at the 
places of structure supports. 

 
Concrete [MPa] Steel [MPa] Brass  [MPa] 

  
Figure 14. Equivalent stress distribution field in considered 
cylinder model 

When analyzing the calculated stress field, one 
should be very careful due to the different charac–
teristics of the considered materials. Depending on the 
method of production, the tensile strength of brass 
ranges from the usual 150 MPa and even up to 440 
MPa, while the tensile strength of structural steels is 
from 340 MPa to 850 MPa. That is why these materials 
can withstand thermal loads very well. Reinforced 
concrete has completely different characteristics. The 
standardized compressive strength of reinforced conc–
rete ranges from 10 to 60 MPa, while the tensile stren–
gth is only about 10% of the compressive strength. Due 
to the small value of thermal conductivity λ, the tempe–
rature gradient τ1 is very significant here. As it causes 
bending, tensile stresses also appear, and the allowable 
value of tensile stress is below 6 MPa. Based on 
equation (22), the concrete can withstand the maximum 
temperature difference between the two sides of the 
plate in an amount of about 27°C. 

7. CONCLUSION  
 

The paper analytically proves the justification of the 
assumption that the temperature field of thin plate 
elements is defined through mid-plate temperature and 
linear temperature gradient normal to the mid-plane. In 
an analytical closed form, applying the method of 
integral transformations, the thin plane deflection was 
determined to be caused by the constant temperature 
gradient. It is shown that the deflection does not depend 
on the plate thickness but only on the dimensions in the 
mid-plane. Also, the corresponding stress field was 
analytically determined. The same problem was solved 
numerically, applying the thin plate finite element, 
where the temperature field is described using tempe–
rature in the middle plane and appropriate temperature 
gradient. The agreement of obtained results confirmed 
the usage of this finite element. The paper also presents 
the dependence of the plate deflection on its thickness at 
constant temperature differences between the upper and 
lower plate surfaces. Since temperature gradient depen–
ds most on the type of material, it is shown that its 
influence is of great importance for non-metal parts of 
machines and building structures. The temperature gra–
dient can be neglected in most calculations for struc–
tures made of materials with high thermal conductivity. 
But for non-metallic constructions, especially concrete 
ones, the temperature gradient is extremely important 
and must be taken into account in the calculation.  
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УТИЦАЈ ТЕМПЕРАТУРСКОГ ГРАДИЈЕНТА 
НА САВИЈАЊЕ ТАНКИХ ПЛОЧА 

 
В. Милошевић-Митић, А. Петровић, 

Н. Анђелић, М. Јовановић  
 

У оквиру теорије термоеластичности уобичајено је 
да се поље температуре танких плоча дефинише 
преко температуре у средњој равни и линеарног 
градијента температуре управно на средњу раван. У 
раду је прво анали-тички доказана оправданост те 
претпоставке у машинским конструкцијама. Затим 
је у затворе-ном аналитичком облику, применом 
методе интегралних трансформација, одређен угиб 
танке плоче који изазива константан градијент 
температуре. Показано је да у том случају угиб 
плоче не зависи од њене дебљине већ само од 
димензија у средњој равни.  Аналитички одређене 
вредности упоређене су са одговарајућим вредно-
стима добијеним применом одговарајућег кона-чног 
елемента танке плоче. Овај коначни елеме-нт дефи–
нисан је и испрограмиран у оквиру програмског 
пакета Комипс. Утицај температу-рског градијента 
на понашање конструкција највише зависи од врсте 
материјала, па је у раду анализирано понашање не–
ких конструктивних елемената од месинга, челика и 
бетона.   

 


