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The Mechanical Modeling of 
Thermomechanical Processes for Thin-
Walled Cylinders 
 
The problem of stress in perforated thin-walled cylinders due to 
mechanical and thermal load was analyzed for cases where the load of the 
system varies both along the cylinder circumference and axially. Starting 
from the solution and considerations for a smooth thin-walled cylinder, the 
concept was expanded and the distribution of deformations caused by 
thermal loads on the cylinder and the resulting stresses in the structure of 
the thin-walled perforated cylinder was observed for a specific form of 
perforation. 
The cylindrical perforated burner is one of the main elements of premixed 
condensing boiler for home heating systems. The quality of combustion, 
and thus the heat load on the outer sheath of the burner, largely depends 
on the layout, shape and dimensions of the perforation. 
This paper presents the mechanical modeling of thermomechanical 
processes of a cylindrical gas burner with premixing for a triangular 
layout or the so-called checkerboard shape of perforation. 
 
Keywords: thin-walled cylinder, deformations and stresses of thin-walled 
cylinders, thermomechanical modeling, thermal stress, premixed 
cylindrical burner, perforation 

 

 
1. INTRODUCTION 

 
The center of research in this paper is the problem of 
stress in perforated thin-walled cylinders due to mecha–
nical and thermal loads for cases where the system load 
varies. This problem was observed in premixed conden–
sing gas burners for domestic heating systems, Figure 1. 

Nowadays the industry focuses on reducing the 
emission of harmful combustion. Development of devi–
ces and technologies follows this globally set goal. A 
premixed condensing gas burner is one such device. 

One of the most important components of this 
device is certainly a cylindrical perforated gas burner 
located in the heat exchanger. A number of properties of 
the whole device depend on the design of this burner. 

The basic characteristics of these new flexible bur–
ners with premixing, more precisely atmospheric pre–
mixed metal burners, are that they are made without 
water cooling and have a great ability to modulate po–
wer 1:3, and even more. They achieve a reduced emi–
ssion of harmful combustion products that does not ex–
ceed 50 [mg/kWh].Greater flexibility also applies to 
different gaseous fuels used for the same device. This 
usually depends on the place where the device is used, 
whether local natural gas, liquefied petroleum gas, bio–
gas and the like are used. As such, the construction of the 
device itself is subject to research from various aspects. 

Perforated burners made of thin steel material are 
thermally and mechanically very durable, and at the 
same time their price is competitive.They should be 

carefully designed to form a front of stable thin flames, 
on which low emissions of CO and NOx harmful com–
bustion products depend.Due to the required flexibility, 
flame fluctuations often occur in the operation of the 
burner, which then creates an uneven heat load. The 
design of the burner should ensure the minimum heat 
load generated during the combustion of different types 
of gas on the burner body at different operating modes. 

 
Figure 1. A condensing gas burner with premixing for 
domestic heating systems, 
(https://viessmanndirect.co.uk/Catalogue/Commercial-Gas-
Boilers, 2022) 

The geometry of a repeated geometric perforation 
pattern on the cylinder of a gas burner (Figure 2, 
Figure 3) plays one of the key roles in creating the heat 
load. 
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The process of the burner's operation takes place in 
such a way that the gas comes from inside the burner, 
the inner cylindrical sheath distributes it evenly and 
passes it towards the next surface, i.e. the outer cylin–
drical sheath. The gas then flows through small ope–
nings in the outer sheath. Here, on the surface of the 
outer sheath, ignition occurs, when a uniform flame is 
formed. The flame is formed on the entire cylindrical 
surface of the outer sheath. 

 
Figure 2. A 3D model of a cylindrical perforated gas burner 
showing a demanding outer  

 
Fifure 3. Cross-section of the body of the gas burner, 
where the inner sheath is also visible 

2. RESEARCH REVIEW 
 

The improvement of gas condensing boilers with pre–
mixing has been the focus of many researchers. Imp–
roving individual parts of the construction of these 
boilers has been investigated from different aspects. 
Thus, some authors dealt with NOx formation in reali–
stic, axi-symmetric condensing boiler setups featuring 
lean combustion of methane stabilized by a porous 
cylindrical burner using a dedicated numerical model 
[1].Some pointed to problems in the variation of gas 
quality [2]. In paper [3], performed 3-dimensional 
numerical simulations with skeletal kinetic mechanisms 
are performed to determine the structure of premixed 
methane-air flames issuing from two-slits patterns. 
Others dealing with construction elements [4] focus in 
the same direction.This paper analyses the outer cy–
linder of the premixed burner in relation to thermal 
stress. Numerical finite element method (FEM) analysis 
was performed based on experimental measurements 
and computational fluid dynamics (CFD) input data. 
Similarly, in their paper [5] the authors focused on the 
investigation of geometric parameters of a flat per–
forated burner. In [6,7], they optimized and verify the 
proposed geometric changes of the burner with the help 
of CFD numerical simulation. In the paper [8], the 
authors analyzed the repeated pattern in the perforation 
of a plate burner for different layouts of openings, 
triangular and linear. Other authors [9] describes steps 
in development of the cylindrical premixed burner taken 
in order to fulfil market requests as well as 
environmental standards, taking in to consideration that 
fuels which can be used, can have different quality 
levels. An analytical solution to stresses and 
displacements in a long functionally graded hollow 

cylinder subjected to uniform heat generation and 
internal pressure was given by the authors in [10]. Stress 
analysis showed that the stresses in the cylinder 
decrease significantly for a certain interval of material 
parameters.In the paper [11], the authors usedthe CFD 
analysis to improve geomet–rical parameters of the 
basic model of a supersonic ejector and optimized its 
operation in different operating conditions. The problem 
of thermal variable stress in thick hollow cylinders was 
dealt with in [12]. The inf–luence of the temperature 
gradient on the bending of thin plates was dealt with in 
[13]. Those authors deter–mined, in a closed analytical 
form, deflection of a thin plate that causes a constant 
temperature gradient. They showed that the deflection 
did not depend on the thic–kness of the plate, but on its 
dimension in the middle plane. In their work [14], the 
authors derived an analy–tical solution for radial, 
tangential and axial thermal stress in a hollow cylinder 
with uniform internal gene–rated heat for thermal 
boundary conditions of convec–tive heating on the inner 
surface of the cylinder and convective cooling on the 
outer surface of the cylinder. In the paper [15], thin-
walled plates and tubes were experimentally 
investigated to quantify the effects of thermal loads on 
the through-thickness temperature gra–dients. In [16] 
the circumferential stress around a triangular or square 
opening in a finite isotropic plane was studied under 
thermal loads. Paper [17] presents the solution for the 
thermal stress of the double Fourier series. This is based 
on the Sanders linear shell theory with additional heat 
load terms. 

In the available literature, it has not been noticed 
that someone has created a comprehensive unique mo–
del that would unify all the influence segments and in 
such a way optimize the geometry of the cylindrical 
burner. 
 
3. THE MATHEMATICAL MODEL FOR A THIN-

WALLED CYLINDER WITH UNEVEN HEAT LOAD 
 

The problem of stress in thin-walled cylinders due to 
mechanical and thermal load was analyzed for cases 
where the load of the system varies along the circum–
ference of the cylinder and axially. 

In the first part of the analysis, the behavior of a 
smooth thin-walled cylinder was observed, while the 
second part of the analysis also included a thin-walled 
cylinder with perforation. 

 
3.1. The mathematical model for a thin-walled 

smooth cylinder with uneven heat loads 
 

The Sanders stress model for a thin-walled cylinder 
under the influence of deformations was chosen [18]. 

First, the distribution of deformations caused by the 
thermal load on the cylinder and the resulting stresses in 
the structure of the cylinder, i.e. the sheath burner, 
which were subsequently developed by Tot [17] and 
Wilson [19], were observed. 

The search for the solution of the system of diffe–
rential equations for deformations and stresses via the 
double Fourier series was applied. 
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The temperature field is the only load acting on the 
cylindrical perforated burner exposed to high tempe–
ratures on the surface of the outer sheath. For this 
reason, a suitable analytical function ( , )T z φ of the tem–
perature distribution of the external action on the sur–
face of the sheath was chosen, [19]. A simple function 
consisting of segments of analytical smooth functions 
by defined areas was chosen. This analytical function is 
specially developed into a double Fourier series in order 
to obtain the temperature coefficients Tn,m that figure in 
the solutions of the system of differential equations for 
deformations and stresses. 

 
3.2. The relationship between stress and strain 

 
The basic deformation equations for thin shells under 
the influence of stress and heat, neglecting radial defor–
mations and stresses, are given by the expressions: 
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Here αT is the thermal deformation. The total de–
formations at an arbitrary point rare given by the com–
ponents: 
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It follows that the stress equations are: 
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3.3. The relationship between deformations and 
displacements 

 
Figure 4 shows the directions of the cylindrical coor–
dinate system, displacements, and resultants of forces 
and moments. 

 

 
Figure 4. Components of the shell in the cylindrical coor–
dinate system 

Now the equations of deformation depending on the 
displacement given by the shell components in the 
cylindrical system are u(z,Ԅ), v(z,Ԅ), w(z,Ԅ) given in the 
given order. Rrepresents the radius of the central surface 
of the shell. 
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The resultants of the forces and moments of the 
forces were obtained by integration over the thickness 
of the shell t, i.e. sheath, using the Sanders' definition: 
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Substituting (3) into (5) and after carrying out the 
integration, the following can be written: 
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The thermal force and moment are introduced in the 
same way: 
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3.4. Applied heat loads 
 

The temperature distribution changes almost linearly 
across the shell thickness t, Figure 4. Considering this, it 
is possible to express any temperatureTat any point (r,Ԅ 
z) by the thickness of the shell t, in the sense where TM is 
the temperature in the middle of the shell, and TD is the 
temperature difference between the upper and lower 
surfaces of the shell.Then the temperature at some point 
of the shell is: 
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The result of integration is: 
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Inserting (4) into (6) and by inserting expression (9), 
the values for the force resultants are obtained: 
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and moments:  
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The Sanders stress model for a thin-walled cylinder 
reduces the general equilibrium equations to a system of 
three equations.External forces Piare introduced into the 
system of equations (Figure 4), but in the final con–
sideration and calculations they do not act because there 
are no external forces in the cylindrical burner model, so 
now the system of equations will have the following 
form: 
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Presentation of differential operators d, δ as d = 

,    
( / )

δ
φ
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z R z
 gives a concise view of this 

system. 
Explicit expressions for thermal forces and moments 

(10) and (11) are included in (12) three general equi–
librium equations, which makes a system of three 
differential equations by u(z,Ԅ), v(z,Ԅ), w(z,Ԅ). 

After arranging these expressions, the matrix 
relation for the displacements associated with the loads 
is obtained. 

The matrix form of the system of equilibrium 
differential equations is: 
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where Ai, Bi, Ciare differentiation operators, and ope–
rators Di refer to the thermal load. 

After the action of the operator d, δ the equations of 
the system (12) are three linear differential equations. 

A detailed description of the development of these 
equations is given in the doctoral dissertation [20]. 

By expressing the load and displacement compo–
nents for the middle surface of the shell, the diameter R, 
linear differential equations can be solved in the form of 
a double Fourier series. 

The choice of members of the development in the 
Fourier series implies simply supported boundary 
conditions at the ends of the cylinder. In the cross-
sections located at the ends of the cylinder, it is allowed 
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to move the points in the axial direction, but their 
movement in the radial direction is prevented. A full 
discussion of boundary conditions in double Fourier 
series solutions is presented in paper [21]. The effect of 
the boundary conditions imposed by the Fourier series 
solution can be removed by considering the cylinder to 
be longer than its actual length.Limits on the axial 
expansion of the cylinder can be set. This allows 
displacements to be representedwith(14). 
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The temperature field is a suitable analytical func–
tion T(z,Ԅ) that can be represented by the(15): 
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 Here it is l – b ≤ z ≤ l + b, π – θ ≤ Ԅ ≤ π + θ, and in 
other areas it is zero, where l, b and θ are the parameters 
that describe the position and width of the temperature 
distribution in axial and angular coordinates. 

 

 
Figure 5. Display of the given temperature distribution, a) in 
the orthogonal projection and b) display on the cylinder 

Figure 5 presents a representation of the selected 
function of two variables that parametrically describes 
the temperature distribution in the limited area of the 
cylinder. It is suitable for double Fourier expansion. 
Figure 5 shows the function in the orthogonal projection 
in a) and the function on the cylinder, in b). 

The function (15) was chosen to parametrically des–
cribe the actual temperature field that appears on the 
cylinder as a load in the most realistic way. It consists of 
segments of analytical smooth functions in defined 
areas. Due to the axisymmetric nature of the cylinder, it 
is possible to arrange more such functions in order to 
obtain a more realistically described temperature field. 

This function can certainly be developed as an 
analytical one into a special double Fourier series(16).  
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The obtained coefficients Tn,m of this order also ap–
pear in the solutions of the system of differential equa–
tions for deformations and stresses(12), that is, in the 
development of these equations into series. 

It is now possible to solve the displacements u(z,Ԅ), 
v(z,Ԅ), w(z,Ԅ) for the problem of a simply supported 
thin cylinder subjected to thermal loading. 

When these equations are arranged, it is possible to 
express all forces and all moments via u(z,Ԅ), v(z,Ԅ), 
w(z,Ԅ) and  TM(z,Ԅ), TD (z,Ԅ). 

By replacing the initial system of equations in the 
matrix form (13) with the Fourier expansion of indivi–
dual terms (14) and (16), the following matrix equation 
is obtained: 
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After the action of the operators Ai, Bi, Cion the 
sums of the members, the system of differential equa–
tions turns into a system of algebraic equations. 

All cosine and sine harmonics of different terms are 
linearly independent, so the original system is decom–
posed into individual systems of three equations for 

n,mterms, where in each equation of the system the 
corresponding terms are associated with un,m, vn,m, wn,m. 

A detailed description of the steps of determining the 
Fourier coefficients are given in the dissertation [20].  

By solving this matrix equation, the solutions 
obtained for displacements are included in the expres–
sions for forces (10) and moments (11), followed by: 

, , , ,

, , , ,
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   (18) 

Now the solutions for the stresses can be obtained: 
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∓

∓

∓

 (19) 

3.5. The mathematical model for a thin-walled 
perforated cylinder 

 
In relation to the papers mentioned, the concept was 
expanded here. Other authors considered stresses for a 
smooth thin-walled cylinder, while a perforated thin-
walled cylinder was considered here.The model was 
extended to consider the stress of a perforated thin-walled 
cylinder subjected to an uneven temperature field. A 
triangular arrangement or the so-called checke–rboard 
shape of the perforation of the outer sheath was observed. 

The geometric arrangement of repeated openings, 
holes and slits, the outer sheath, as well as their sizes, 
significantly affect the combustion process, fluid dyna–
mics, and as a result, the thermal load on the structure.In 
order to introduce perforation elements into the analy–
tical description of the temperature stress of the outer 
cylindrical sheath gas burner, a procedure for calcu–
lating the equivalent elasticity parameters was intro–
duced. The perforated plate is considered as a conti–
nuous orthotropic plate that has three different moduli 
of elasticity E*.  

A starting assumption can be considered that the 
narrow strip part of the perforated rectangular plate is 
equivalent to the narrow strip part of the perforated 
cylinder whose curvature is neglected. 

After obtaining the equivalent parameters of the 
modulus of elasticity E*, Poisson's coefficient v*, these 

parameters were introduced into the mathematical 
model of the smooth cylinder described in the previous 
section 3.1 and then the stresses for the perforated 
cylinder were calculated according to expression(19).  

It is important to note that the analysis refers to the 
arrangement of only circular openings in the perfo–
ration, without the part that has the shape of a slot. As is 
known, in addition to the circular shape of the opening, 
there is also the shape of the slit on the perforation of 
the real cylinder of the outer sheath burner, which must 
be takeninto account in subsequent research. 

All parameters related to the equivalent flat plate in 
the cylinder model are tabular values of the properties 
of the material from which the cylinder is built, 
HAYNES 230. 

Figure 6 shows a perforated plate having a perfo–
ration pattern with a triangular arrangement of holes. 
The plate can be viewed as a series of longitudinal strips 
of width P in the observed plate, wherenis the number 
of strips, Figure 7. 

According to this pattern, also the width of the repe–
ating basic motif is P. This width is the size from the 
center to the center of the weakening surface of the 
plate, i.e. hole, which can be seen in Figure 8. 

The connection between the weakening surfaces, 
which remains a full part of the plate, is called the liga–
ment h and its length represents the length of the liga–
ment connection. η is defined as the efficiency of the 
connection, ligament of the non-perforated and perfo–
rated plate. It represents a parameter for the calculation, 
the size of the weakening of the perforated surface of 
the plate com–pared to the non-perforated one. 

It is defined asη =
h
P

. It served as an argument in 

the functional dependence that would show how much 
the observed parameters of the perforated surface wea–
kened compared to the same parameters of the full sur–
face without perforation. 
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For the overall behavior of the equivalent plate and 
the perforated plate to be the same, the deformations for 
the two plates should be equal.Based on [22]. the values 
of three different moduli of elasticity *E of a continuous 
orthotropic plate were calculated as follows. 

For the x- direction: 

 
* 1

( )η
=x

x

E
E f

 (20) 

where is: 

( ) 4 2
63 (2 )

(2 ) tan
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⎢ ⎥− ⎪
⎢ ⎥⎪⎣ ⎦⎭

critical x

f

 (21) 

This expression is correct for evaluating the 
efficiency of ligament connections, starting from the 
efficiency coefficient which is η = 100% up to the cri–
tical efficiency coefficient of ηcritical-x = 100%. Here, 
100% efficiency means that there are no holes on the 

plate, that is h = P, it follows that is 1η = =
h
P

, i.e. 

100%, and an efficiency of 13.39% means that the holes 
start to overlap. 

   
Figure 6. A sample of a loaded 
plate with a triangular 
arrangement of holes 

Figure 7. A separated 
strip from the sample 
with a triangular 
arrangement of 
openings 

For the y-direction: 
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critical y

g

(23) 

This expression is correct for evaluating the effec–
tiveness of ligaments from η = 100% up to a critical 
efficiency coefficient of 50%, i.e. ηcritical-x =  50%. 

For the z-direction it follows that: 

 

*

2

( ),

( ) 1 (1 )
2 3

η

πη η

=

= − −

z

z

E
h

E

h
 (24) 

By knowing the modulus of elasticityEand Poisson's 
ratio ν in all three directions, the shear modulus can be 

obtainedusing a standard formula 
( )2 1 ν

=
+
EG  

The nine necessary material constants for an ortho–
tropic plate were obtained. 

 
3.6. Stress multipliers 

 
The matrix establishing the dependence of equivalent 
strains and equivalent stresses is: 

* *

* * *

* *
* *

* * *
*

**
*

* * *
*

* *

*

*

*

1
0 0 0

1
0 0 0

1
0 0 0

1
0 0 0 0 0

2

1
0 0 0 0 0

2
1

0 0 0 0 0
2

yx zx

x y z

yx zy
xx xx

y y z
yy

zyzx
zz

z z z
yz

zx yz

xy

zx

xy

v v

E E E

v v

E E E

vv

E E E

G

G

G

ε σ

ε σ

ε

ε

ε

ε

⎛ ⎞− −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− −

⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

*

*

*

*

*

yy

zz

yz

zx

xy

σ

σ

σ

σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (25) 

A link for isotropic material: 
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Figure 8. The smallest triangular repeating motif 
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The relationship between stress and strain in the 
form of the inverse elasticity operator as an action of the 

stiffness operator is given by the matrix relation: 
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where it follows according to Cepkauskas [22]: 

* * * * * * * * *

* * *

1 2υ υ υ υ υ υ υ υ υ− − − −
Δ = xy yx yz zy zx xz xy yz zx

x y zE E E
 (28) 

Equations (25), (26), (27) can now be written in 
matrix notation as: 

 

* * *

* * 1 *

ε σ
ε σ

σ ε−

=
=
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C
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C

 (29) 

Throughout this analysis, it was assumed that ε = ε*
 

so C*σ*
 we equate with Cσ and solve for σ: 

 * 1 * *σ σ σ−= =C C M  (30) 

M is a 6 X 6 matrix of stress multipliers to convert 
average fictitious stress to average real stresses in the plate. 
 
3.7. Application to a perforated thin-walled cylinder 
 
The analytical model of a smooth cylinder in cylindrical 
coordinates neglects parameters along the radial 
component.In this way, the 6 x 6 matrix operators are 

reduced to 3 x 3 matrix operatorsand the Eof the smooth 
cylinder is isotropic as well as that of the flat plate. 

Stresses σσxx(x,Ԅ), σσyy(x,Ԅ), σσxy(x,Ԅ) are now 
stresses in the cylindrical coordinate system σz(z,Ԅ), σԄ 
(z,Ԅ), τz,Ԅ (z,Ԅ). 

It follows: 
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The matrix M is: 
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At the end it follows: 
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Figure 9. Comparative σz(z,Ԅ) along the z-axis for a smooth and perforated cylinder 

The equivalent plate is represented by a smooth cy–
linder, and the values of its modulus of elasticity and 
Poisson's coefficient are geometrically redefined. 

The stresses * * *( , ),    ( , )   ( , )φ φσ φ σ φ σ φz zz z z  are va–
lues obtained by calculation for a smooth cylinder, 
while the stresses ( , ),    ( , )   ( , )φ φσ φ σ φ σ φz zz z z are for 
a perforated cylinder, as in expression (34).  

 
Example: 
 
As applied in this paper, the criterion for choosing the 
parameters of the temperature distribution 
function ( , )T z φ that figures in the mathematical model is 
the greatest possible similarity with the real temperature 
field. The results of the combustion simulation in the 
numerical CFD simulation of the gas burner with 
perforation were used as the temperature field [20]. 
With the help of this CFD simulation, the temperature 
field ( , )T z φ was obtained as a load on the outer 
sheath,in this way yielding temperature distribution on 
the outer sheath for a burner with a length of 154 mm 
and a diameter of 80 mm.   

After calculating the stress, this result was used to 
compare the stress on the plate with the redefined 
stresses on the cylinder with a triangular arrangement of 
holes with a diameter 0,6 mm. 

Figure 9 shows both *( , )σ φz z and ( , )σ φz z along the 
z-axis for a smooth and perforated cylinder. Stresses for 
a smooth and perforated cylinder for temperature 
distribution parameters according to the expression (15 
)of the function T(z,Ԅ for values T = 335K, l = 88 mm, 
b = 55 mm, θ = π/4.  
 
4. CONCLUSION 

 
In the available literature, it has not been noticed that 
someone has created a comprehensive unique model 
that would unify all the influence segments and in such 
a way optimize the geometry of the cylindrical burner. 

The presented thermomechanical model expanded 
and unified the mathematical stress model for a thin-
walled smooth cylinder with the mathematical stress 
model for a perforated thin-walled cylinder exposed to 
uneven thermal loads.This unique model opens up op–
portunities for analysis and optimization of different 

forms of perforations in thin-walled cylinders exposed 
to uneven thermal stresses. 

In the future research, additional CFD numerical 
simulations should be made and mathematical results 
compared for different forms of perforations of thin-
walled cylinders. 
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NOMENCLATURE 

, ,R t L Mean radius, cylinder thickness, cylinder 
length 

, ,r zφ  Cylindrical coordinates 
,
,φ
φ

z

z

e
e
e

 Total deformations 

,
,φ

φ

σ
σ
τ

z

z

 Normal and tangential stresses 

*

*

*

,
,φ

φ

σ
σ

τ

z

z

 Equivalent normal and tangential stresses 

E Modulus of elasticity 
E* Equivalent modulus of elasticity 
ν Poisson's ratio 
ν *  Equivalent Poisson's ratio 
α Coefficient of thermal expansion 
T Temperature 

,
,φ
φ

ε
ε
ε

z

z

  Deformations in the middle of the shell 

,
,φ
φ

z

z

k
k
k

  Deformations due to curvature changes 

( , ),
( , ),
( , )

φ
φ
φ

u z
v z
w z

 Displacements in a cylindrical coordinate 
system 

R The radius of the central surface of the 
shell 

,
,φ

φ

z

z

N
N

N
  Resultants of forces 

,
,φ

φ

z

z

M
M

M
  Bending moments 
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,
,φ

x

r

P
P

P

 Components of external forces 

TM
 Temperature on the outer surface of the 

cylinder  

TD
 Temperature difference of the inner and 

outer surface 
t Shell thickness 

TN  Thermal force 
TM  Thermal bending moment 

K Expansion rigidity 
D Bending rigidity 
G Shear modulus 

n,m Harmonic members in angular and axial 
directions 

mλ  π
=

m R

L
 

,d δ  ,    
( / )

d R
z R z

δ
φ

∂ ∂ ∂
= = =
∂ ∂ ∂

 

P Perforation step 

h Connection between weakening surfaces, 
ligament 

η Connection efficiency, solid and perforated 
plates 

 
 

МЕХАНИЧКО МОДЕЛИРАЊЕ 
ТЕРМОМЕХАНИЧКИХ ПРОЦЕСА 

 
Б. Прохаска, Н. Радић, С. Булатовић 

 
Анализиран је проблем напрезања у перфорираним 
танкозидним цилиндрима усљед механичког и 
топлотног оптерећења за случајеве гдје оптерећење 
система варира и по ободу цилиндра и аксијално. 
Полазећи од рјешења и разматрања за пуни 
танкозидни цилиндар, овдје је проширен концепт и 
посматрана је расподјела деформација насталих 
топлотним оптерећењем на цилиндар и насталих 
напона у структури танкозидног перфорираног 
цилиндра за конкретан облик перфорације. 
Уређај на чијем се усавршавању континуирано ради 
је предмијешаникондензациони котао за кућне 
системе гријања. Цилиндрични перфорирани горио–
ник је један од главних елемената овог уређаја. Од 
распореда, облика и димензија перфорације у 
многоме зависи квалитет сагоријевања, а самим тим 
и топлотног оптерећења на вањском плашту овог 
горионика.  
У овом раду је приказано механичко моделирање 
термомеханичких процеса цилиндричног гасног 
горионика са предмијешањем за троугаони распоред 
или такозвани шаховски облик перфорације. 

 


