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Accurate prediction of renewable sources in general and solar radiation is
critical for optimal integration of solar energy systems. The studyexplores
eight Machine Learning models namely Linear Regression Model
(LRM),Random Forest Regressor (RFR), Gradient Boosting Regressor
(GBR),Gaussian Process Regression (GPR), , Artificial Neural Network
(ANN), k-Nearest Neighbors (NN), Support Vector Regression (SVR), and
Deep Learning (DL) for predicting thedirect solar radiation atclimatically
distinctsix sites in Saudi Arabia. Models are evaluated using eight
statistical metrics along with time series and absolute error analyses. The
present work introduced the Trigonometric Cyclical Encoding (TCE),
which significantly improved the temporal learning. Comparative SHAP-
based analysis revealed that TCE enhanced the explanatory power of
temporal features by 49.26% and 53.40% for monthly and daily cycles.
Resultsshow that DL achieved the lowest Root Mean Square Error (RMSE)
and highest coefficient of determination, while ANN consistently indicated
high accuracy at all thesites. Error and time series analyses denoted stable
predictions byANN and DL, whereas LR, RFR, and k-Nearest Neighbors
(NN) showed largerfluctuations. The proposed TCE technique additionally
improved the model outputby maintaining the overall fitness of the models
between 81.79% and 94.36% in all scenarios. This studyreinforcethe effec—

tive planning of solar energy integration in differentclimatic conditions.

Keywords: Forecasting; Renewable Energy, Solar Energy;; Machine
Learning; Deep Learning; Saudi Arabia.

1. INTRODUCTION

The climate change and fast depletion conventional
fuels have driventhe world to move at a faster pace to—
wards global transition of energy production from clean
and renewable sources instead of traditional fossil fuels
[1-3]. Among technologically mature and commercially
acceptable sources, solar energy has seen prominence as
a clean source of energy asit places less stress on the
environment and can be integrated into urban areas
[4,5]. In the recent times, renewable energy has ac—
counted for 86% of global power additions in 2023, lar—
gely as a result of enormous growth in solar and wind
power [6,7]. This growth is mostly associated with the
technological development, decrease in cost, and proper
government and institutional policies and frameworks
have made the utilization of solar energy feasible and
affordable [8,9].

However, solar power generation is variable/ inter—
mittent and depends on weather, climate, and temporal
patterns. The unpredictability of solar electricity gener—
ation is a significant barrier to blending it into existing
power infrastructure[10]. The fluctuating behaviour of
solar resources is influenced by meteorological condi—
tions, thereby creating uncertainty in estimating the
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power generation [10]. A study by [11] has shown that
enhanced forecasting can improve the efficiency of the
plant operations by up to 15% and the integration costs
can also be cut down to a large extent. Solar forecasting
could be applied to scheduling the use and storage of
solar energy, evaluating and forecasting the perfor—
mance of existing solar installations, sizing solar plants,
and assessing the capacity and demands of electricity
networks [12].

Two main techniques; the empirical and ML models,
have received prominence in the literature, as efficient
ways of estimating and forecasting the incoming solar
energy by learning from historical time series of a parti—
cular geographical setting [13]. Hissou et al. [14]
reported a new technique by integrating several ML
models with RFE and obtained a great success com—
pared with the performance of LR model (RMSE=
0.003, R?=0.999). Solano and Affonso [15]showed that
combining multiple ML algorithms, through ensemble
with weighted averaging gave commendable results: 6%
decrease in Mean Absolute Error (MAE), 3% in Root
Mean Square Error (RMSE) and 16% in Mean Absolute
Percent Error (MAPE). Rehman et el.[16]and [17]used
these machine learning techniques for wind speed pre—
diction and wind farm layout optimization and reported
good performance which further strengthen the role of
these methodologies for forecasting the meteorological
parameters for renewable energy applications. Mirkov
et al. [18] proposed a preconditioner for Krylov method
solution of linear systems for wind energy applications.
When building ML model for a particular geographic
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location, certain features contribute to its architecture
[19]. Chaibiet al. [20] reported SVR-BO as the optimal
performer for Moroccan climatic conditions (RMSE
=0.4473). On the other hand, Bakir [21] found that best
performing algorithms differ from site to site. There are
also more advanced strategies that combine multiple
methods, which are starting to yield better progress - for
instance, Lu et al. [22] combined LibRadtran RTM and
ML models and achieved an R* value of 0.98 but their
work was limited to clear sky conditions. Likewise,
Khafaga et al. [23] proposed an ADSSOA-LSTM which
led to a low RMSE of 0.000388 however adding up
computational burden.

The Kingdom of Saudi Arabia (KSA) stands out as
one of the world’s top locations for capturing solar
energy. Forecasting solar radiation accurately is an im—
portant step in the planning, design, and utilization of
solar energy systems [24]. This study focuses on the
performance evaluation of eight ML algorithms for six
climatologically distinct sites in KSA, representing a
geographical distribution within the coastal, inland,
northern and western flanks of the kingdom with dif-
ferent altitudes and topography. Meteorological data
was sourced from NASA POWER on daily basis span—
ning January 1, 2022to December 31, 2024for all sites.
ML algorithms were evaluated using a wide range of
metrics (MBE, RMSE, rRMSE, MABE, MAPE, R?, t-
stat, MSE, and MAE) to offer a reliable assessment of
the prediction accuracy [25].

The present study seeks to address the gap in
location-specific insights into ML model efficacy, cont—
ributing to the identification and selection of optimal
algorithms for accurate solar energy forecasting within
varied geographical context across the middle eastern
region particularly for the case of KSA [26]. Prior
research has excessively used machine learning (ML)
and deep learning (DL) models, but the time (months,
days, and hours) are commonly treated as linear inputs,
ignoring their inherent cyclic nature. The present study
introduces TCE strategy to preserve seasonal periodicity
and improve temporal learning in consistent manner.
Unlike previous studies, the effectiveness of TCE app—
roach is quantitatively validated using SHAP-based
analysis. Furthermore, different ML/DL algorithms of
linear, kernel-based, ensemble, and neural networks are
evaluated across climatically distinct regions and offer a
rare, large-scale, and geographically diversified assess—
ment.Table 1 summarises research findings, most recent
literature, methodologies, and limitations relevant to this
study.

Table 1. Summary of Literature Review

Ref.| Methodology Key Findings Limitations
[15]| Multiple ML | Best performance with RF | Limited to
algorithms (RF, | and CatBoost combination | Brazilian
XGBoost, region
CatBoost)
[20]| Comparison of 5| SVR-BO performed best Single
ML models |(RMSE=0.4473kWh/m?/day)| location
with/without BO study (Fez,
Morocco)
and Limited
feature set
SCA best for Afyonkarahisar| Limited
GBO best for Agri input

[21] Multiple
metaheuristic
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algorithms variables
(GBO, HHO,
BMO, SCA,
HGSO) for
distinct locations
in Turkey
[22]| Comparison of RTM-RF showed best
six ML performance (MAE 15.57 clear sky
approaches W/m?) conditions

[23]] ADSSOA- ADSSOA-LSTM achieved Limited

Limited to

LSTM hybrid | lowest RMSE (0.000388) feature
comparison with exploration
GA, PSO, GWO
[27]| Predicts daily SVR achieves the best No FE, No
global solar | performance with R? values feature
radiation data for up to 0.99 selection
6 Pakistani cities reported
[28]| Ensemble ML RF outperformed other Limited to
algorithms for models (MAE=0.0141), Dhahran,
solar power (RMSE=0.0211) Limited
prediction in evaluation
Saudi Arabia metrics
[29]] Multiple ML | LR and RF achieved lowest | Limited
models (RF, nMAE (-0.144, -0.151) feature
GBM, LR, selection
CART, DT) methods
[30]] Compares RF 95.98% accuracy with Limited to
with optimized RF Queretaro,
hyperparameter Mexico
optimization Focused on
with other ML short-term
models predictions
[31]] Comparative | RF-LSTNet performed best | Limited
analysis of explanation
BiLSTM-based of feature
LSTNet selection
process
[32]] WREF Solar Superior performance Region-
model compared to baseline models| specific
(Northwest
China)

[33]| Radial Basis | DSR; MAPE =1.6%-9.3% | Relatively
Function Neural | DNR; MAPE= 0.49%-41% | old dataset

Network (RBF- (1998-2002)
NN) for DSR
and DNR
[34]| Review of ML Decision trees, RF, Inadequate
techniques XGBoost, and SVM are use of FE,
effective ML models Limited
context for
KSA
[35]| Multiple ML XGBoost showed highest Single
algorithms performance location
comparison study
[36]| Comparison of Random Forest Limited to
next-gen ML outperformed other single
algorithms algorithms; MLP-ANN application

improved with feature
selection

2. METHODOLOGY

The study usesa structured ML pipeline for performance
evaluation of eight algorithms for the prediction of DNI
at six climatically distinctlocationsin KSA. The metho—
dology includes site identification, data procurement,
pre-processing, exploratory data analysis, and temporal
feature engineering using Trigonometric Cyclic Enco—
ding (TCE). Next, the model is trained and then exha—
ustive hyperparameter optimization is performed
tailored toeach site and ML algorithm. Finally, as et of
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statistical metrics is used to assess the model perfor—
mance. Figure 1 presents a step-by-step flow of the
methodological approach use din the study.

Site Selection &
Data Acquiistion

v o v

Data Splitting

Algorithm Selection
& Initialization

Data Preprocessing

(88-28)
Hyperparameter
Exploratory Data Dptimization

Analysis (Tabuk Data)

v v

Hodel Training

Feature Engineering —

. -

Hodel Testing and Evaluation

Performance Evaluation

Figure 1. Methodological Flowchart
2.1 Case Study Area Description

The Kingdom of Saudi Arabia has become the hotspot
for harnessing solar energy due to its unique geographic
position, which allows it to enjoy high solar irradiance
[28,37]. This study focuses on six key strategic sites
representing diverse climatic and geographical regions
in KSA. These sites arecarefully selected to ensure a
wide coverage of different altitudes, terrains, and solar
radiation profiles, to provide a robust foundation for
evaluating and assessing the performance of the ML
algorithms. Table 2 presents key geographic informa—
tion about the sites considered in this study.Figure 2
presents the geographical locations of the six selected
sites - Hagl, Tabuk, Timaa, Duba, AIWajh, and Umluy;j -
spread across diverse climatic zones in KSA.Figure 3
provides an overview of DNI across KSA and
showecases the yearly and daily averages of DNI.

2.2 Meteorological Data Overview

The data used was obtained from NASA POWER data—
base. The present study included the essential input
variables date, temperature, relative humidity, all sky
clearness index, and wind speed on daily basis from
January 1, 2022, to December 31, 2024 [38,39]. The
dataset consists of 365X3 rows of daily values with 8
columns representing 7 input features and 1 target
variable for all the sites. The target variable, labelled as
All Sky Surface Shortwave Downward Direct Normal
Irradiance, explicitly represents the direct component of
solar radiation incident on a surface normal to the sun’s
rays under all-sky conditions (i.e., including the effects
of clouds). Metadata and description of the meteoro—
logical data is summarized in Table 3.
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Table 2. Geographical Overview of Case Study Areas

Location Region Latitude Longitude Altitude
CN) (°E) (m)
Hagl Northern | 29.2899 34.9300 36
Tabuk Northern | 28.3829 36.4839 781
Timaa Eastern 27.6173 38.5252 844
Duba Western 27.3410 35.7229 45
AlWajh Western 26.2561 36.4430 21
Umlyj Northern 25.0041 37.2738 10
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Figure 2. Geographical Distribution of Case Study Sites
Across Saudi Arabia (Source: Authors)
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Figure 3. DNI Resource Map of KSA (Source: Solargis)

2.3 Machine Learning (ML) Algorithms

Eight ML algorithms are selected for the evaluation due
to their known performance in non-linear regression and
solar radiation forecasting tasks [41,42]. Table 4 sum—
marizes the underlying mechanisms, strengths, limita—
tions, and best use cases. Selected algorithms span from
simple linear regressors (LRM) to ensemble-based
learners (RFR, GBR) and kernel methods (SVR, GPR),
as well as neural network models (ANN, DLM).

Table 3. Description of Meteorological Data [40]

Feature Description Unit

DT Date -

MO Month -

DY Day -

HR Hour hr
TMP Temperature at 2 Meters °’C

RH Relative Humidity at 2 Meters %

CI All Sky Insolation Clearness Index | dimensionless
WS Wind Speed at 10 Meters m/s
DNI All Sky Surface Shortwave KWh/m%/day

Downward Irradiance
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Table 4. Summary of ML Algorithms [43]

trade-off between learning rate, tree depth, and model

2.4 Hyperparameter Optimization

Table 5 summarizes the hyperparameter search space and
the corresponding optimized values used for each ML
algorithm in this study. The chosen ranges are designed
to balance model flexibility and computational efficiency,
drawn on established values from literature and prior
experiences in regression tasks involving solar radiation
forecasting. For instance, the range of parameters for
RFR (estimators: 800 to 1200, depth: None to 20) are
commonly used for high-dimensional, non-linear prob—
lems with similar data sizes as used in this study. The
SVR was tuned using variations of C, epsilon, and kernel
functions that are known to influence margin-based
learning in noisy/non-linear data. The hyperparameter
space for Gradient Boosting was selec—ted to explore the

FME Transactions

Algorithm | Strengths Limitations Use Case Fit | Ref complexity. For ANN, the architecture and learning
ANN Captures Needs Good for | [44] strategy waspre-defined rather than tuned via exhaustive
complex tuning, moderately search, following common literature practices in deep
non-linear prone to complex learning model building for tabular data [47].
patterns overfitting | patterns and
flexible Table 5. Hyperparameter Search Space and Selected
. Optimized Values for Classical ML Algorithms [33,34]
modelling
DLM Learns Requires Best for [41, Model |Hyperparameter| Optimization Optimized
hierarchic large data, large jgj Range Hyperparameters
al slow to train | datasets and ANN Hidden layer - (128, 64, 32, 16)
features, capturing sizes
handles complex activation - relu
time temporal/sp solver - adam
patterns atial alpha - 0.0001
: patterns Learning rate - adaptive
GBR High Slow Ideal for - GBR estimators 100, 200, 300 1000
accuracy, | training, risk | maximizing Learning rate 0.01,0.1,02 0.03
customiza of accuracy on Max depth 3.5.7 6
ble overfitting structured Sub sample 0.;3’ ’1.0 0.9
— - data Min samples 2,5,10 5
GPR Probabilis | Computation Useful - split
tie _ally when GPR kemel | 10* RBF (length | [#%2 * Matern
prediction intensive uncertainty scale=1.0), (length scale=1
s, flexible estimates 1.0 * Matern nu=1.5) ’
are (length scale=1.0,
important nu=1.5)
KNN Simple, Sensitive to Useful for - alpha le-5, le-3, le-1 le-1
no ‘k’ and scale small optimizer fmin 1 bfgs b | fmin | bfgs b
training of data datasets restarts 3,5 5
phase where local KNN neighbors 3,5,7,10 10
similarity weights uniform, distance distance
matters metric euclidean, manhattan
LRM Simple, Fails to Best for - manhattan
fast, capture non- simple, LRM - - default
interpreta linear linear RFR estimators 800, 1000, 1800
ble patterns relationship 1200,1800
S Max depth None, 10, 20 None
RFR Robust to Slow for Great for - Min samples 2,4, 6 5
overfittin | large forests, noisy or split
g, handles less non-linear Min samples 1,2,3 2
non- interpretable | tabular data leaf
linearity Max features 0.3, 0.5, sqrt, log2
well 10g2
SVR Strong Po'o'r Works well (6] SVR C 1, 10, 50, 100 50
performa | scalability to | for srngll to epsilon 0.01,0.1,02,05 0.2
niee on large medium kernel linear, rbf rbf
smaller datasets datasets 1 1
datasets with clear gamima scale, auto sege
margins

Deep Learning Model (DLM)

Given the practical constraints associated with hyper—
parameter optimization for deep learning across mul—
tiple geographical datasets, a manually configured arc—
hitecture was implemented in this study. The design
choices were guided by prior studies on similar fore—
casting tasks [48]. Performance was monitored using
MAE, and early termination was applied to minimize
overfitting. Table 6 summarizes the configuration para—
meters for DLM.

Table 6. Training Parameters for DLM [48]

Parameter Value
Feature Selection Top 3 features
Input Dimension 3 (based on FS output)
Hidden Layers 128, 64, 32, 16
Activation Function relu
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Dropout Rate 0.1
Optimizer adam
Loss Function MSE
Evaluation Metric MAE
Learning Rate Strategy adaptive
Max Iterations (Epochs) 1000
Batch Size 128, 64, 32, 16
Early Stopping Yes

2.5 Trigonometric Cyclic Encoding (TCE)

Feature Engineering (FE) is an important method for
transforming time dependent data into a more infor—
mative and model-friendly format. This study focused
on strategically creating and transforming time features
to maximize the predictive power of the available
information [14,30]. A key aspect of FE is to effectively
handle temporal variables, acknowledge the cyclic
nature of Month, and Day by using the TCE technique.
Traditional time series numerical representations of
days, and months often missed the periodicity of these
measurements. For instance, the shift from 23:00 to
00:00 indicates closeness rather than a significant linear
change, which is frequently overlooked by standard
numerical encoding methods[30].

The present study applied TCE technique for cyc—
lical features of time (days and months). Each temporal
variable was broken into sine and cosine components,
producing paired features that reflect the circular nature
of time. This transformation helps machine learning
models grasp the periodic relationships between time-
based data [49]. This method remains inadequately un—
explored [14]. The present study considers the cyclical
encoding method to convert cyclic data into a format
that is suitable to ML algorithms [14].

As shown in Figure 4, this study turns each time-
related value (day or month) into a circular format, so
that the smallest and the largest values sit next to each
other. This is achieved byusing sine and cosine func—
tions, which allow to represent time in a smooth and
continuous way. In case of hours, the circle starts at
midnight on the left and moves counterclockwise. This
means that 11:59 PM is placed right next to 12:00 AM -
just like it is in real time. The same kind of transfor—
mation is applied to both, the month and the day values.

For days and months, the trigonometric cyclical
transformation into sin and cosine components is exp—
ressed mathematically as follows:

~_ . -
18
Figure 4. Cyclical Features (Source: Authors)

where x is the cyclical feature value ( month or day), T
is the period of the cycle (12 for months, 365 for days),
Xgin and x,.,, are the sin and cos transformed values.

To better capture the seasonal patterns of solar ra—
diation, TCE was applied to convert the temporal vari—
ables month and day into cos and sin features to pre—
serve the periodic nature of time variables without int—
roducing artificial breaks (for instance, between De—
cember and January). Figure 5 presents the correlation
between the TCE features and the core climatic vari—
ables for each site. For instance, in Haql, cos month has a
strong negative correlation with TMP (-0.72) and a
positive correlation with RH (0.63). Similar relati—
onships are observed forTabuk, where cos month cor—
relates at --0.75 with TMP and at 0.76 with RH. In Timaa
and Duba, which exhibit more extreme seasonal
variability, sin-month and cos-month both maintain mo—
derate correlation with DNI of up to -0.39. Additionally,
the encoded features (sin MO, cos MO, sin DY,
cos DY) remain nearly uncorrelated with each other,
demonstrating no clear redundancy and multicollinearity.

2.6 Performance Metrics

The performance metrics - MAE, MSE, RMSE, Rz,
rRMSE, t-stat, MAPE, and MBE are used to assess the
performance of the ML models. This metrics is care—
fully chosen to conduct a thorough evaluation of the
overall performance of estimating and predicting solar
radiation in-terms of error magnitude. The mathematical
expressions of these metrics is presented in Table 7. In
Table 7, the term y; is the observed value of the depen—

. X dent variable, p; is the predicted value from the ML
Xgin =Sin| 27— (1) . . o
T models, n is the number of observations, and y; is the
_ X mean of the observed values.
Xeos = COS| 271 — 2)
T
Table 7. Mathematical Model of Performance Metrics
Metrics Mathematical Model Description Desired Output
1 & Measures the mean magnitude of | closer to 0 is better
MAE MAE = —Z| Vi—Y errors betweqn predlcteq anq
ni4 actual values without considering
their direction[50,51]
1 5 Measures the mean squared closer to 0 is better
MSE =— Z ( Vi — ¥ ) differences between predicted
MSE PG ;
i=1 and actual values, and penalises
larger errors more heavily[50]
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n

Square root of MSE, providing
error measure in the same units

closer to 0 is better

1 A \2
RMSE RMSE = |— P = Vi
n Z;‘ (y’ Ji ) as the target variable[52]
2 Explains the variation in the closer to 1 is better
R2 RI-1- Z (yi —Ji ) target variable that's predictable
—\2 from the input variable(s)[53]
Z (.Vi —Ji )
1]y -9, Expresses accuracy as a closer to 0% is
MAPE = — z =L _“11x100 percentage, showing the mean better
MAPE niol Vi absolute percent difference
between predicted and actual
values[52,54]
& Used to evaluate bias of closer to 0 is better
MBE MBE = — ( Vi—yi ) forecasting models[55]
n-.
i=1
1 Derived from RMSE[52]
- —5 ) closer to 0% is
rRMSE n 2.0 =5) better

Hagl

_E-T‘
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Figure 5. Correlation of TCE Features and Climatic Variables Across the Six Case Study Sites

3. RESULTS AND DISCUSSION

3.1 Temporal Patterns of DNI and Meteorological
Parameters

The data used in this study covers a period of three years
from January 1 2022 to December 31 2024. The daily
mean values of meteorological data are used in this study,
which are obtained from hourly mean values. Accurate
forecasting of solar radiation relies on a clear under—
standing of the local climatic dynamics influencing
irradiance levels. This study identifies seasonal patterns
and site-specific environmental behaviours of irradiance
that affect the accuracy ofML model. Figures 6 to 10
present the trends of DNI, WS, CI, RH, and TMP,
respectively;providing the forecasting challenges and
regional variations present across the study locations.
DNI values in Tabuk are consistently high, during the
summer months (June-September), where it frequently
reaches around 8 to 10 kWh/m?/day, with noticeable lows
during winter, Figure 6. Riyadh exhibits moderate
variability, with values typically ranging from 3-7 kWh/
m*day and occasionally peaking above 9 kWh/m?*/day
during summer months. Haql shows the most moderate
profile among all sites, generally maintaining values
between 2.5 and 6.0 kWh/m?*/day, with some peaks of7
kWh/m*day during summer. Timaa demonstrates consi—
derable fluctuation throughout the year, with values
ranging from 2.5 to 8 kWh/m*day. Duba presents a
relatively stable profile with most values lying between 3
and 7 kWh/m*day, though it experiences some spikes of
up to 9.0 kWh/m?*/day during certain periods. AIWajh
shows a pattern somewhat similar to Tabuk, with high
summer values often exceeding 8 kWh/m*day, but
exhibits more pronounced fluctuations during winter
months, where values drop even below 3.0 kWh/m?/day.
AtHagq]l, the wind speed exhibits moderate patterns at
10 meters above ground level (AGL), with peaks reaching
around 6.0 m/s showing stronger winds during mid-year,
Figure 7. Tabuk's wind profile also exhibits moderate
chnage, with speeds typically ranging between 3.0 and 7.0
m/s. Timaa demonstrates relatively larger fluctuations
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winds throughout the years, with occasional highs above
9.0 m/s. Duba, a coastal site, experiences steady winds
with rarely surges above 6.0 m/s, but generally maintains
moderate speeds around 3.0-5.5 m/s. AIWajh presents a
somewhat erratic pattern with notable fluctuations between
3.0 and 7.0 m/s during three years. Umluj, a coastal site,
experiences good winds with variations between 3.0 and
7.0 m/s but often reach 8.0 m/s and more.

Tabuk generally maintains higher and relatively stable
CI values, often above 0.70, particularly during mid-year,
while experiencing some dips during winter months, see
Figure 8. Timaa shows moderate variability with CI values
typically ranging between 0.45 and 0.75, with occasionally
reaching below 0.50. Duba exhibits the same pattern as
above with chnages between 0.5 and 0.7. At AlWajh,
relatively consistent high values of CI , often above 0.65,
with some lows near the end of the year are noticed.

Umlujshows moderately stable values varying bet—
ween 0.60 and 0.70. Haql presents an interesting pattern
with high values but more pronounced fluctuations du—
ring the winter months.Haql, Duba, AIWajh, and Umluj
maintain relatively stable and cyclic RH levels, typically
ranging between 40-70%, with AIWajh showing slightly
higher summer time values more consistent levels, as
observed from Figure 9. Tabuk and Timaa demonstrate
more pronounced variations, with higher RH in winter
months (reaching 80%) and lower during summer
(dropping to 15-20%).

With respect to ambient temperature variation over
three years of data, all the sites, under consideration,
show a cyclic variation with lows and highs during
winter and summer times, as shown in Fig. 10. At Haql,
Tabuk, and Timaa;overall lower values of temperature
are observed during entire period compared to those at
Duba, AlWajh, and Umluj. At first three sites, the
temperature values reach as low as of 5°C in January
and February and as high as 30°C during summer time
(August and September). At Duba, Alwajh, and Umluj;
all three coastal sites; the daily mean temperature values
vary from 15°C to 37°C and has relatively lower
variability in terms of annual magnitudes, Figure 10.
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Figure 8: Clearness Index trends across chosen sites
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Figure 9: Relative Humidity trends across selected sites
Hagl ~— Tabuk Timaa Duba AlWajh Umluj
48 T - -
. L i; '. \ ") L1 !
) ,m;'.,-.-;l:-._:@.!!:u i 'u u.uﬂh ?., | '!.‘.E“'
—_ , Jl'.”w “.'J e _I F,[ ll F, .I ;r\”.l i‘ 1
= t [l --'|I'I|,: r L"\.:‘I-, ' I !1‘1 : l 'l_l" 1 s TN
2 ok a I: T Lllm : r "“j'.". ; b th
E E,’..::: ) ! 1 | ; ‘o : "'f ! d
5 : J * . | u ) [
- - sl BT bt/ g
ofhat N Wl g it
'.l" L I n: ‘I'l. vu L] L]
: |
Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2822 2823 2824 2825
Date

Figure 10: Temperature trends across selected sites

3.2 Model Performance Evaluation

The study utilizes daily mean values of DNI, tempe—
rature, pressure, relative humidity, and wind speed over
a period of three years, starting from 01 January 2022
and ending on 31 December 2024. The daily averages
are obtained using the hourly mean values of each
parameter. The data was obtained from NASA POWER.
The performance comparison of eight (8) ML
algorithms across six distinct climatic regions in KSA is
carried out in terms of error metrics and the resulting
values are depicted in Figure 11.The multi-metric and
site-specific perspective, on how each algorithm
performs across different regions, is presented.lt
captures relative trendsand central tendencies, trade-
offs, and variability in model behaviour.

Multi-Metric Evaluation

In terms of MAE, models exhibit consistent variation
across sites. The LRM notably records the highest MAE
values atmost of the locations, peaking at Timaa
with0.45 and Tabuk with0.4250. The ANN and DLM
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models show relatively lower MAE values of 0.32 and
0.31 for Umluj and Duba; respectively. A similar trend
holds true for MSE and RMSE. However, RFR demon—
strates relatively poor performance in Timaa (MSE:
0.335, RMSE: 0.575), while DLM and ANN maintain
high accuracy at Dubaand Umlujwith MSE values of
0.150 and 0.155, respectively.

Regarding R?, the DLM model maintains high
performance across all sites, reaching 0.92 in Hagql,
Tabuk, and Duba.Similarly, ANN performs well,
particularly in Haql(R*=0.924) and Tabuk, Timaa,
Duba, and AlWajh(R*>0.91). However, models like
KNN and GBR show relatively low values ofR?, with
KNN reaching a low of 0.865in AlWjhand the least is
recorded forRFR in AlWajhat 0.851. SVR recorded the
highest R? value of 0.893in Timaa.

Regarding MAPE, performance diverges more
sharply. RFR and KNN report the highervalues between
5.11 and 7.89% corresponding to Duba for DLM and
Timaa for RFR models. In general, the MAPE values
are in the acceptable range and ANN and DLM models
seem to be outperforming the others. MBE values
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further differentiate model tendencies. ANN tend to
show slightly negative biases of -0.013, -0.065, -0.013,
and -0.007 at Haql, Tabuk, Alwajh, and Umluj; as can
be observed from Radar diagram of Figure 11. DLM
model showed slight positive biases at five sites in
terms of MBE values varying from 0.025 to 0.214 at
Umluj and Timaa with only negative bias of -0.00006 at
AlWajh. However, GPR and SVR exhibit lower or
slightly negative and positive biases atsomesites.

From the t-stat, values vary between -2.053 and
6.064 corresponding to models ANN and DLM at
Tabuk and Timaa. It is worth to mention that t-stat
values clustered around cluster around 1-2 and -0.1 to -
2.0 for most models. rRMSEalso validatedDLM and
ANN’s robustness, with values consistently below 9%
across most sites. DLM reports the lowest rRMSEof
5.99% at Duba, while LRM, RFR, and KNN frequently
exceed 8%, particularly.

|—0— Hagl Tabuk —e— Timaa —— Duba —*— AlWajh —— Unluj ‘

MAE ANN MSE ANN

(kWh/m?day) }
KNN
i
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rRMSE (':'5) ANN

GBR

Figure 11: Multi-Metric Performance Across Sites
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Multi-Site Evaluation

In Haql, ANNregistered the lowest RMSE of
0.3941kWh/m?*day and the highest R? of 0.9241. DLM
also showed the lowest rRMSE (5.990%) and a positive
bias in MBE (0.08564), indicating a slight over-estima—
tion at Duba. ANN closely followed with an RMSE of
0.4113 and R? of 0.9143. LRM showed a reasonable R?
(0.8851) butproduced a higher RMSE (0.4762) and
MBE (0.0054). The highest MAE (0.4464) and RMSE
(0.5599) in Dubawere associated with DLM and LRM,
with an associated TRMSE of 8.68%. In Tabuk, ANN
again produced the lowest RMSE at 0.4484, paired with
the highest R? of 0.919. DLM closely matched this with
an RMSE of 0.4513 and R? of 0.918. GPR also
performed well (RMSE: 0.4541, R* 0917) and a
MAPE of 5.52% against DLM (5.22%). LRMrecorded
the highest error values atthis location, with RMSE of
0.546and rRMSE of 7.75%. KNN, SVR,and GBR also
trailed behind, exhibiting RMSE values above 0.46and
lower R? values under 0.92.

For Timaa, both ANN and GBR demonstrated
competitive performance, with ANN achieving a lower
RMSE (~0.469) and MAPE (~5.9%). The error spread
among models was smaller at coastal sites, indicating
relatively homogeneous radiative conditions. Never—
theless, linear and simpler models showed inferior pre—
dictive performance.At Duba, the coastal site, model
performance showed increased atmospheric complexity
due to humidity and aerosol effects. ANN provided the
lowest RMSE (~0.486) and MAPE (~6.2%), while GBR
and RFR followed closely but with slightly higher bia—
ses. The increased MAE and RMSE values compared to
inland sites highlight the challenges of solar irradiance
forecasting under marine-influenced conditions.

In Al Wajh, GBR marginally outperformed ANN in
terms of RMSE (~0.498), although ANN maintained a
lower MAE and comparable MAPE. This suggests that
ensemble models can better capture localized
nonlinearities associated with coastal aerosol loading
and cloud intermittency. Umluj presented a bit chal—
lenging condition for accurate prediction, with all
models exhibiting higher error levels compared to other
sites. RMSE values exceeded 0.50 and MAPE appro—
ached 7-8% for most models, particularly tree-based
and kernel-based approaches. ANN still remained
among the top performers but with reduced accuracy.
These results highlight the need for site-specific tuning
or hybrid modelling approaches for Umlu;.

Across all six sites, ANN and GBR consistently
ranked among the top-performing models, but the
magnitude and ranking of errors varied by location. This
site-wise variability in MAE, RMSE, MAPE, and MBE
underscores the strong influence of local climatology
and confirms thatno single machine learning model is
universally optimalfor solar irradiance forecasting
across the diverse geographic and atmospheric environ—
ments of Saudi Arabia.

Figure 12 presents the model performance with
respect to the variation in target variable (WS) expla—
ined by the models for specific site-model combinations
for two locations (Timaa and Duba) and for four models
(RFR, ANN, SVR, and GBR) only for clarity.
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The complete results on all the sites and for all the
models are included in Figure A-1 in appendix-A. As
shown in Figure A-1, ANN and DLM consistently
demonstrate superior performance and near-perfect fits,
with R? values exceeding 0.91atHaql, Tabuk, Timaa,
Duba, and Umluj. On the other hand, LRM and RFR
yielded the lowest R* values and showed more scattered
prediction patterns, particularly in Timaa, AIWajh, and
Umluj. Also, ANN demonstrated the consistently high
R? scores across various sites, achieving an R? of 0.9241
in Haql. Similarly, in Tabuk, Timaa, Duba, and Umluj,
ANN attained R? values of 0.9194, 0.9180, 0.9143, and
0.9097, respectively. In Alwajh, ANN recorded an R? of
0.8884, SVR recorded 0.8726 and LRM showing some
promise with 0.8786, Figures 12 and A-1.

DLM performed remarkably well, recording the
higher R? values of 0.9199, 0.9184, 0.9213, 0.9041 in
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Hagql, Tabuk, Duba, and Umluj; respectively. However,
the R? values at Timaa (0.8979) and Alwajh (0.8879)are
a bit less than thOse discussed earlier.

SVR showed strong performance in Tabuk (0.9111),
Duba (0.9023), and Timaa(0.9149), closely outper-
forming ANN and DLM in some instances, Figure 12.
However, R? dropped in Haql(0.8929), AlWajh (0.8726)
and Umluj(0.8934), see Figure A-1. GBR and GPR both
produced moderately strong results, the former peaked
in Tabuk (R* = 0.9120) and dropped to 0.8701 in
AlWajh, while the latter maintained a relatively consis—
tent performance across sites, scoring R? values around
0.905 and more. KNN demonstrated reasonably good
fits in Haql(0.9129), Tabuk (0.9123), and Duba(0.9110),
but performance compromise dslightly in Timaa
(0.8954), AlWajh (0.8635), and Umluj(0.8851). RFR
delivered R? 0f0.8555to 0.9005 at AlWajh and Duba.
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LRM achieved highest R? value in Haql (0.8968) and
lowest in AIWajh (0.8786), Figure A-1.

In addition to overall fit (see Figure A-1), the
temporal performance of each model was assessed over
the entire period. Figure 13 presents a comparative time
series prediction trend of predicted versus actual values
for Timaa and Duba covering RFR, ANN, SVR, and
GBRmodels for clarity purpose only.

3.3 Temporal Performance Evaluation

However, the complete results for all the locations and
the models are included as Figure A-2 in Appendix-A.
In Figure 13, actual and predicted daily DNI values are
plotted along with their corresponding absolute errors.

In Hagql, predictions exhibit consistent seasonal trac—
king across most models. ANN, DLM, and SVR show
relatively smooth alignment with observed values, with
visibly lower absolute errors across the mid-year high-
radiation months. However, LRM, RFR and KNN disp—
lay intermittent spikes in error, particularly around tran—
sitional periods like April and October. For Tabuk,
models ANN, SVR and DLM demonstrate minimal di—
vergence from actual values, especially during peak
summer, when the atmospheric conditions are relatively
stable. The absolute error plots for SVR in Timaaremain
lessaround the baseline throughout the year. On the
other hand, LRM and KNN show pronounced error
peaks between April and August.

In Duba, the predictive trajectories for DLM and
ANN follow the actual DNI curve with considerable
consistency, particularly from June through September.
GBR and GPR show stable performance but RFR re—
veals sharp deviations during the summermonths.
AlWajh’s results highlight increased volatility in pre—
dictions across all models. KNN and LRM, showed
larger deviations between predicted and actual values
during the second and fourth quarters of the year. ANN
maintains relative proximity to observed values during
high solar periods, but frequent smaller oscillations in
the absolute error trace indicate continuous minor pre—
diction fluctuations.

In Umluj, both ANN and DLM show close agree—
ment with actual DNI values for much of the year. The
absolute error profiles remain suppressed throughout
most of the year, notably from May to September. SVR
and GBR also perform betterbut exhibit occasional
surges in error, particularly during brief cloudy intervals
typical in coastal regions.

It can be summarized that across all the sites, the
non-linear ML models such as ANN, DLM, and GBR
consistently provide excellent agreement between the
predicted and observed DNI values, as observed from
Figure 13 and Figure A-2. It is noticed that the site de—
pendent climatic conditions strongly influence the
predictability of the models with inland sites showing
close agreement and coastal sites larger deviations.

3.4 Impact of Trigonometric Cyclical Encoding
(TCE)

The study carried out a comparative analysis of feature
importance to quantitatively evaluate the efficacy of
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TCE. It is analyzed that how TCE influences the
explanatory power of temporal features. This was
accomlished by training two separate RFR models
under identical conditions. The first model utilised raw
integer representations of temporal features (Month and
Day), while the second employed cyclic encoded
features (sin Month, cos Month, sin Day, and cos Day).
The SHAP framework was then applied to both models
to obtain a rigorous and consistent measure of each
feature’s  marginal  contribution to the ML
algorithm[56]. For direct comparison, the sine and
cosine components of each temporal concept were
aggregated to represent the total impactof ‘Cyclical
Month’ and ‘Cyclical Day’ features.

The Figure 14 presents SHAP summary plots for six
sites (Hagl, Tabuk, Timaa, Duba, Alwajh, and Umluyj),
highlighting the relative importance and directional
influence of input features on the model predictions. The
results indicate that CI is the dominant predictor,
exhibiting the widest spread of SHAP values, with higher
CI values consistently contributing positively to the
model prediction and lower values exerting a negative
impact. The RH and TMP follow in importance,
indication moderate but effective contributions, with
mixed positive and negative SHAP distributions. The
seasonal indicators (sin MO and cos MO) provide
annual variability is captured by the model but cannot be
the primary driver of predictions. In contrast, daily cycle
variables (sin DY and cos DY) and WS exhibit SHAP
values tightly clustered around zero. This simply means
that these parameters have a marginal role in shaping the
model output. Overall, the SHAP analysis confirms that
the model behavior is mainly dominated by CI and other
meteorological parameters.

The mean absolute SHAP importance of temporal
features (month and day) using raw versus cyclical
encoding across six sites (Haql, Tabuk, Timaa, Duba,
Alwajh, and Umluj) is shown in Figure 15. For all
locations, cyclical encoding markedly enhances the
importance of the month feature, with substantial relative
increases ranging from about 50% to over 130%,
indicating a much-improved capture of seasonal
periodicity. The day feature also shows consistent, though
smaller, gains under cyclical encoding, reflecting better
representation of intra-month continuity. Among the
sites, Timaa and Duba exhibit the strongest sensitivity to
cyclical month encoding, while Alwajh and Umluj show
comparatively moderate but still notable improvements.
Overall, the outcome demonstrates that cyclical encoding
more effectively represents temporal periodicity than raw
encoding, leading to stronger and more physically
meaningful contributions of temporal features to the
model across all sites.

4. CONCLUSION

This study comprehensively evaluated the performance
of eight ML models for forecasting solar radiation
across six climatically diverse sites in Saudi Arabia. The
models evaluated include RFR, LRM, ANN, KNN,
SVR, GBR, GPR, and DLM. Eight statistical metrics
were used to assess predictive accuracy and genera—
lizability across each site.
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Figure 14. Comparison of SHAP summary of cyclically encoded features and raw features

The key findings, derived from an extensive multi
metric-site evaluation, are summarized as follows:
e Deep Learning (DLM) and Artificial Neural Net—
work (ANN) models demonstrated superior and
consistent performance across most locations, with

accuracy, particularly during high solar radiation
seasons, whereas other models showed wider
fluctuations.
Finally, based on the entire data analysis, the models are
prioritised and ranked from 1 to 8, as given in Table 8.

DLM achieving the lowest RMSE (as low as
0.3941 kWh/m?/day in Duba) and ANN showing

Table 8. Ranking of Model Performance.

remarkable stability and low errors (e.g., MAPE of Model | Key Strengths Key Limitations Rank
5.23% in Tabuk). Excellent MAPE
e Model effectiveness was significantly influenced by and t-stat in Requires careful
hical limati .. ANN | variable climates, tuning and larger 1
geographica and climatic condlt}ons. Sgpport‘V§c— adapts to non- datasets
tor Regression (SVR) excelled in specific arid in— linearity
land regions like Timaaand Tabuk, while other Competitive in Exhibit
models such as RFR and KNN exhibited greater DLM | high-data XIS 2
.- . systematic MBE
performance volatility. scenarios
e The implementation of Trigonometric Cyclical Low bias, reliable | Computationally
Encoding (TCE) for temporal features substantially GPR | in moderate intensive for large 3
enhanced model learning. A comparative analysis ‘éanzblh% datasets
revealed that TCE increased the feature importance inos(;ablizrilﬁ::gnce Poor in high- 4
of temporal signals by over 50.1% t0131.6% for climates variability sites
monthly cyc.les and 13.4% to 58.4% for daily A decuate n linear | OO i non-linear,
cycles, enabling models to more effectively capture SVR oq climates; sensitive 5
fundamental periodic patterns in solar radiation. regimes parameter choice
e Time series and error analysis confirmed that ANN GBR | Lowest Slightly higher 6
and DLM maintained the most stable prediction MAE/RMSE, computational cost
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minimal bias,
robust across all
sites and
irradiance levels

Highest errors and
unable to capture 7
non-linearity

LRM Simple and fast

Consistent and
RFR robust in high-
irradiance

Slightly less
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Figure 15. Comparison of aggregated SHAP importance for
raw versus cyclically encoded temporal features

4.1 Limitations and future work

While this study provides a robust evaluation of ML
models for intra-annual solar radiation forecasting, it is
important to note its limitation regarding the temporal
scope of the dataset. The use of data from a single
calendar year (2023), while meticulously analyzed, may
not encompass the full spectrum of inter-annual climatic
variability and extreme weather anomalies specific to the
regions of Saudi Arabia. Consequently, the absolute
values of the reported error metrics should be inter—preted
within this context. Future work will focus on expanding
the dataset to include multiple years of historical data.
This will allow for the development of more generalized
models that are resilient to long-term climatic shifts and
rare meteorological events, further enhancing their
operational reliability for grid integration.
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Figure A-1: Actual vs. Predicted DNI across Sites and Models.
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Figure A-2. Prediction Patterns and Absolute Error Trends

MPEJABUBAILE JUPEKTHOT CYHYEBOT
3PAYEIbA KOPUIIREILEM
BUIEMO/IEJICKE EBAJIVALIMJE CA
TPUTOHOMETPHJCKAM IIMKJINYHUAM
MMPOIIECOM

JI.Bb. Pammp, HLLII. yupa, L. Pexman

Tayno mnpenpuljarbe OOHOBJEMBHX H3BOpA YOIIITE U
CYHUYECBOT 3pauerha je KJbYYHO 32 ONTUMAJHY
WHTETpalyjy cucremMa conapue ecHepruje. Crynuja
HCTpaxKyje ocaM Mojelia MAIIMHCKOT y4Yerha, HauMe
Mozen nuHeapHe perpecuje (LRM), perpecop ciydajue
myme (RFR), perpecop rpaamjeHTHOr TIOjadaBama
(GBR), I'aycoBy npornecHy perpecujy (GPR), Bemrauky
HeypoHCKy Mpexy (ANN), k-majommke cyceme (NN),
perpecujy BekTopa nozpiuke (SVR) u nydutcko yuyeme
(DL) 3a npensubame AUPEKTHOT CYHUEBOI 3payerma Ha
LIECT KJIMMATCKH pa3uuuThX Jokanuja y Caynujckoj
Apabuju. Mogenu ce epanyupajy kopuuihemem ocam
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3y i M A EN
n-t.

CTaTUCTUYKUX METPHKA, 3ajeJHO Ca BPEMEHCKUM
cepHjamMa M aHaIM3aMa alCOJIyTHHX Ipeliaka. Y OBOM
pagy je yBEOEHO TPUTOHOMETPHUJCKO  LUKIUYHO
komupame (TCE), koje je 3HauajHo 100OJHIIAIO
TeMIOpaHo yueme. KoMmnapatuBHa aHann3a 3acHOBaHA
Ha SHAP-y otkpuna je npa je TCE mobospiiao
oOjamrmaBajyhy Moh BpeMEHCKHMX KapaKTepUCTHKA 3a
49,26% u 53,40% 3a MeceuHe U [HEBHE LIMKIYyCE.
Pesynratn mokaszyjy ma je DL mocturao HajHMXKY
cpenmwokBagparHy rpemky (RMSE) wu  HajBumm
Koe(UIHjeHT AeTepMuHaImje, 1ok je ANN KOHCTaHTHO
MOKA3MBa0 BHCOKY TA4yHOCT Ha CBHM JIOKalHjama.
AHanu3e rpemiaka 1 BPEMEHCKHX CepHja yKazyjy Ha
crabwina npensuhamwa ANN u DL; nok cy LR, RFR u
k-najommxu cycenn (NN) nokaszanu Behe duykryanmje.
[pennoxena TCE TtexHuka je nomaTHO mnoOoJplnaia
pe3ynTat Mmonena onpxkaBajyhu yKymHY MOZOOHOCT
mozena usmely 81,79% u 94,36% y cBUM CIiCHApHjUMa.
OBa cryauja mojayaBa e(UKACHO IUIAHUPAEHE HHTET—
pauyje coylapHe SHEepruje y pasiuvduTUM KIMMAaTCKHM
yCIIOBUMA.
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