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Accurate prediction of renewable sources in general and solar radiation is 
critical for optimal integration of solar energy systems. The studyexplores 
eight Machine Learning models namely Linear Regression Model 
(LRM),Random Forest Regressor (RFR), Gradient Boosting Regressor 
(GBR),Gaussian Process Regression (GPR), , Artificial Neural Network 
(ANN), k-Nearest Neighbors (NN), Support Vector Regression (SVR), and 
Deep Learning (DL) for predicting thedirect solar radiation atclimatically 
distinctsix sites in Saudi Arabia. Models are evaluated using eight 
statistical metrics along with time series and absolute error analyses. The 
present work introduced the Trigonometric Cyclical Encoding (TCE), 
which significantly improved the temporal learning. Comparative SHAP-
based analysis revealed that TCE enhanced the explanatory power of 
temporal features by 49.26% and 53.40% for monthly and  daily cycles. 
Resultsshow that DL achieved the lowest Root Mean Square Error (RMSE) 
and highest coefficient of determination, while ANN consistently indicated 
high accuracy at all thesites. Error and time series analyses denoted stable 
predictions byANN and DL; whereas LR, RFR, and k-Nearest Neighbors 
(NN) showed largerfluctuations. The proposed TCE technique additionally 
improved the model outputby maintaining the overall fitness of the models 
between 81.79% and 94.36% in all scenarios. This studyreinforcethe effec–
tive planning of solar energy integration in differentclimatic conditions. 
 
Keywords: Forecasting;Renewable Energy; Solar Energy;; Machine 
Learning; Deep Learning; Saudi Arabia. 

 
1. INTRODUCTION 

 
The climate change and fast depletion conventional 
fuels have driventhe world to move at a faster pace to–
wards global transition of energy production from clean 
and renewable sources instead of traditional fossil fuels 
[1–3]. Among technologically mature and commercially 
acceptable sources, solar energy has seen prominence as 
a clean source of energy asit places less stress on the 
environment and can be integrated into urban areas 
[4,5]. In the recent times, renewable energy has ac–
counted for 86% of global power additions in 2023, lar–
gely as a result of enormous growth in solar and wind 
power [6,7]. This growth is mostly associated with the 
technological development, decrease in cost, and proper 
government and institutional policies and frameworks 
have made the utilization of solar energy feasible and 
affordable [8,9]. 

However, solar power generation is variable/ inter–
mittent and depends on weather, climate, and temporal 
patterns. The unpredictability of solar electricity gener–
ation is a significant barrier to blending it into existing 
power infrastructure[10]. The fluctuating behaviour of 
solar resources is influenced by meteorological condi–
tions, thereby creating uncertainty in estimating the 

power generation [10]. A study by [11] has shown that 
enhanced forecasting can improve the efficiency of the 
plant operations by up to 15% and the integration costs 
can also be cut down to a large extent. Solar forecasting 
could be applied to scheduling the use and storage of 
solar energy, evaluating and forecasting the perfor–
mance of existing solar installations, sizing solar plants,  
and assessing the capacity and demands of electricity 
networks [12].  

Two main techniques; the empirical and ML models, 
have received prominence in the literature, as efficient 
ways of estimating and forecasting the incoming solar 
energy by learning from historical time series of a parti–
cular geographical setting [13]. Hissou et al. [14] 
reported a new technique by integrating several ML 
models with RFE and obtained a great success com–
pared with the performance of LR model (RMSE= 
0.003, R²=0.999). Solano and Affonso [15]showed that 
combining multiple ML algorithms, through ensemble 
with weighted averaging gave commendable results: 6% 
decrease in Mean Absolute Error (MAE), 3% in Root 
Mean Square Error (RMSE) and 16% in Mean Absolute 
Percent Error (MAPE). Rehman et el.[16]and [17]used 
these machine learning techniques for wind speed pre–
diction and wind farm layout optimization and reported 
good performance which further strengthen the role of 
these methodologies for forecasting the meteorological 
parameters for renewable energy applications. Mirkov 
et al. [18] proposed a preconditioner for Krylov method 
solution of linear systems for wind energy applications. 
When building ML model for a particular geographic 
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location, certain features contribute to its architecture 
[19].  Chaibiet al. [20] reported SVR-BO as the optimal 
performer for Moroccan climatic conditions (RMSE 
=0.4473). On the other hand, Bakir [21] found that best 
performing algorithms differ from site to site. There are 
also more advanced strategies that combine multiple 
methods, which are starting to yield better progress - for 
instance, Lu et al. [22] combined LibRadtran RTM and 
ML models and achieved an R2 value of 0.98 but their 
work was limited to clear sky conditions. Likewise, 
Khafaga et al. [23] proposed an ADSSOA-LSTM which 
led to a low RMSE of 0.000388 however adding up 
computational burden. 

The Kingdom of Saudi Arabia (KSA) stands out as 
one of the world’s top locations for capturing solar 
energy. Forecasting solar radiation accurately is an im–
portant step in the planning, design, and utilization of 
solar energy systems [24]. This study focuses on the 
performance evaluation of eight ML algorithms for six 
climatologically distinct sites in KSA, representing a 
geographical distribution within the coastal, inland, 
northern and western flanks of the kingdom with dif–
ferent altitudes and topography. Meteorological data 
was sourced from NASA POWER on daily basis span–
ning January 1, 2022to December 31, 2024for all sites. 
ML algorithms were evaluated using a wide range of 
metrics (MBE, RMSE, rRMSE, MABE, MAPE, R2, t-
stat, MSE, and MAE) to offer a reliable assessment of 
the prediction accuracy [25].  

The present study seeks to address the gap in 
location-specific insights into ML model efficacy, cont–
ributing to the identification and selection of optimal 
algorithms for accurate solar energy forecasting within 
varied geographical context across the middle eastern 
region particularly for the case of KSA [26]. Prior 
research has excessively used machine learning (ML) 
and deep learning (DL) models, but the time (months, 
days, and hours) are commonly treated as linear inputs, 
ignoring their inherent cyclic nature. The present study 
introduces TCE strategy to preserve seasonal periodicity 
and improve temporal learning in consistent manner. 
Unlike previous studies, the effectiveness of TCE app–
roach is quantitatively validated using SHAP-based 
analysis. Furthermore, different ML/DL algorithms of 
linear, kernel-based, ensemble, and neural networks are 
evaluated across climatically distinct regions and offer a 
rare, large-scale, and geographically diversified assess–
ment.Table 1 summarises research findings, most recent 
literature, methodologies, and limitations relevant to this 
study. 
Table 1. Summary of Literature Review 

Ref. Methodology Key Findings Limitations 
[15] Multiple ML 

algorithms (RF, 
XGBoost, 
CatBoost) 

Best performance with RF 
and CatBoost combination 

Limited to 
Brazilian 

region 

[20] Comparison of 5 
ML models 

with/without BO 

SVR-BO performed best 
(RMSE=0.4473kWh/m²/day) 

Single 
location 

study (Fez, 
Morocco) 

and Limited 
feature set 

[21] Multiple 
metaheuristic 

SCA best for Afyonkarahisar 
GBO best for Ağrı 

Limited 
input 

algorithms 
(GBO, HHO, 
BMO, SCA, 
HGSO) for 

distinct locations 
in Turkey 

variables 

[22] Comparison of 
six ML 

approaches 

RTM-RF showed best 
performance (MAE 15.57 

W/m²) 

Limited to 
clear sky 

conditions 
[23] ADSSOA-

LSTM hybrid 
comparison with 
GA, PSO, GWO

ADSSOA-LSTM achieved 
lowest RMSE (0.000388) 

Limited 
feature 

exploration 

[27] Predicts daily 
global solar 

radiation data for 
6 Pakistani cities

SVR achieves the best 
performance with R² values 

up to 0.99 

No FE, No 
feature 

selection 
reported 

[28] Ensemble ML 
algorithms for 

solar power 
prediction in 
Saudi Arabia 

RF outperformed other 
models (MAE=0.0141), 

(RMSE=0.0211) 

Limited to 
Dhahran, 
Limited 

evaluation 
metrics 

[29] Multiple ML 
models (RF, 
GBM, LR, 

CART, DT) 

LR and RF achieved lowest 
nMAE (-0.144, -0.151) 

Limited 
feature 

selection 
methods 

[30] Compares RF 
with 

hyperparameter 
optimization 

with other ML 
models 

95.98% accuracy with 
optimized RF 

Limited to 
Queretaro, 

Mexico 
Focused on 
short-term 
predictions 

[31] Comparative 
analysis of 

BiLSTM-based 
LSTNet 

RF-LSTNet performed best Limited 
explanation 
of feature 
selection 
process 

[32] WRF Solar 
model 

Superior performance 
compared to baseline models 

Region-
specific 

(Northwest 
China) 

[33] Radial Basis 
Function Neural 
Network (RBF-
NN) for DSR 

and DNR 

DSR; MAPE = 1.6%-9.3% 
DNR; MAPE= 0.49%-41% 

Relatively 
old dataset 

(1998-2002)

[34] Review of ML 
techniques 

Decision trees, RF, 
XGBoost, and SVM are 

effective ML models 

Inadequate 
use of FE, 
Limited 

context for 
KSA 

[35] Multiple ML 
algorithms 
comparison 

XGBoost showed highest 
performance 

Single 
location 

study 
[36] Comparison of 

next-gen ML 
algorithms 

Random Forest 
outperformed other 

algorithms; MLP-ANN 
improved with feature 

selection 

Limited to 
single 

application 

 
2. METHODOLOGY 

 
The study usesa structured ML pipeline for performance 
evaluation of eight algorithms for the prediction of DNI 
at six climatically distinctlocationsin KSA. The metho–
dology includes site identification, data procurement, 
pre-processing, exploratory data analysis, and temporal 
feature engineering using Trigonometric Cyclic Enco–
ding (TCE). Next, the model is trained and then exha–
ustive hyperparameter optimization is performed 
tailored toeach site and ML algorithm. Finally, as et of 
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statistical metrics is used to assess the model perfor–
mance. Figure 1 presents a step-by-step flow of the 
methodological approach use din the study. 

 
Figure 1. Methodological Flowchart 
 

2.1 Case Study Area Description 
 
The Kingdom of Saudi Arabia has become the hotspot 
for harnessing solar energy due to its unique geographic 
position, which allows it to enjoy high solar irradiance 
[28,37]. This study focuses on six key strategic sites 
representing diverse climatic and geographical regions 
in KSA. These sites arecarefully selected to ensure a 
wide coverage of different altitudes, terrains, and solar 
radiation profiles, to provide a robust foundation for 
evaluating and assessing the performance of the ML 
algorithms. Table 2 presents key geographic informa–
tion about the sites considered in this study.Figure 2 
presents the geographical locations of the six selected 
sites - Hagl, Tabuk, Timaa, Duba, AlWajh, and Umluj - 
spread across diverse climatic zones in KSA.Figure 3 
provides an overview of DNI across KSA and 
showcases the yearly and daily averages of DNI. 
 
2.2 Meteorological Data Overview 
 
The data used was obtained from NASA POWER data–
base. The present study included the essential input 
variables date, temperature, relative humidity, all sky 
clearness index, and wind speed on daily basis from 
January 1, 2022, to December 31, 2024 [38,39]. The 
dataset consists of 365X3 rows of daily values with 8 
columns representing 7 input features and 1 target 
variable for all the sites. The target variable, labelled as 
All Sky Surface Shortwave Downward Direct Normal 
Irradiance, explicitly represents the direct component of 
solar radiation incident on a surface normal to the sun’s 
rays under all-sky conditions (i.e., including the effects 
of clouds). Metadata and description of the meteoro–
logical data is summarized in Table 3. 

Table 2. Geographical Overview of Case Study Areas 

Location Region Latitude 
(oN) 

Longitude 
(oE) 

Altitude 
(m) 

Hagl Northern 29.2899 34.9300 36 
Tabuk Northern 28.3829 36.4839 781 
Timaa Eastern 27.6173 38.5252 844 
Duba Western 27.3410 35.7229 45 
AlWajh Western 26.2561 36.4430 21 
Umluj Northern 25.0041 37.2738 10 

 
Figure 2. Geographical Distribution of Case Study Sites 
Across Saudi Arabia (Source: Authors) 

 
Figure 3. DNI Resource Map of KSA (Source: Solargis) 

2.3 Machine Learning (ML) Algorithms 
 

Eight ML algorithms are selected for the evaluation due 
to their known performance in non-linear regression and 
solar radiation forecasting tasks [41,42]. Table 4 sum–
marizes the underlying mechanisms, strengths, limita–
tions, and best use cases. Selected algorithms span from 
simple linear regressors (LRM) to ensemble-based 
learners (RFR, GBR) and kernel methods (SVR, GPR), 
as well as neural network models (ANN, DLM). 
Table 3. Description of Meteorological Data [40] 

Feature Description Unit 
DT Date -
MO Month -
DY Day -
HR Hour hr
TMP Temperature at 2 Meters °C 
RH Relative Humidity at 2 Meters %
CI All Sky Insolation Clearness Index dimensionless
WS Wind Speed at 10 Meters m/s
DNI All Sky Surface Shortwave 

Downward Irradiance 
kWh/m2/day
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Table 4. Summary of ML Algorithms [43] 

Algorithm Strengths Limitations Use Case Fit Ref 
ANN Captures 

complex 
non-linear 
patterns 

Needs 
tuning, 
prone to 

overfitting 

Good for 
moderately 

complex 
patterns and 

flexible 
modelling 

[44] 

DLM Learns 
hierarchic

al 
features, 
handles 

time 
patterns 

Requires 
large data, 

slow to train 

Best for 
large 

datasets and 
capturing 
complex 

temporal/sp
atial 

patterns 

[41,
43,
45] 

GBR High 
accuracy, 
customiza

ble 

Slow 
training, risk 

of 
overfitting 

Ideal for 
maximizing 
accuracy on 
structured 

data 

- 

GPR Probabilis
tic 

prediction
s, flexible 

Computation
ally 

intensive 

Useful 
when 

uncertainty 
estimates 

are 
important 

- 

KNN Simple, 
no 

training 
phase 

Sensitive to 
‘k’ and scale 

of data 

Useful for 
small 

datasets 
where local 
similarity 
matters 

- 

LRM Simple, 
fast, 

interpreta
ble 

Fails to 
capture non-

linear 
patterns 

Best for 
simple, 
linear 

relationship
s 

- 

RFR Robust to 
overfittin
g, handles 

non-
linearity 

well 

Slow for 
large forests, 

less 
interpretable 

Great for 
noisy or 

non-linear 
tabular data 

- 

SVR Strong 
performa

nce on 
smaller 
datasets 

Poor 
scalability to 

large 
datasets 

Works well 
for small to 

medium 
datasets 

with clear 
margins 

 
[46] 

 
2.4 Hyperparameter Optimization 
 
Table 5 summarizes the hyperparameter search space and 
the corresponding optimized values used for each ML 
algorithm in this study. The chosen ranges are designed 
to balance model flexibility and computational efficiency, 
drawn on established values from literature and prior 
experiences in regression tasks involving solar radiation 
forecasting. For instance, the range of parameters for 
RFR (estimators: 800 to 1200, depth: None to 20) are 
commonly used for high-dimensional, non-linear prob–
lems with similar data sizes as used in this study. The 
SVR was tuned using variations of C, epsilon, and kernel 
functions that are known to influence margin-based 
learning in noisy/non-linear data. The hyperparameter 
space for Gradient Boosting was selec–ted to explore the 

trade-off between learning rate, tree depth, and model 
complexity. For ANN, the architecture and learning 
strategy waspre-defined rather than tuned via exhaustive 
search, following common literature practices in deep 
learning model building for tabular data [47]. 
Table 5. Hyperparameter Search Space and Selected 
Optimized Values for Classical ML Algorithms [33,34] 

Model Hyperparameter Optimization 
Range 

Optimized 
Hyperparameters

ANN Hidden layer 
sizes 

- (128, 64, 32, 16) 

activation - relu 
solver - adam 
alpha - 0.0001 

Learning rate - adaptive 
GBR estimators 100, 200, 300 1000 

Learning rate 0.01, 0.1, 0.2 0.03 
Max depth 3, 5, 7 6 
Sub sample 0.8, 1.0 0.9 
Min samples 

split 
2, 5, 10 5 

GPR kernel 1.0 * RBF (length 
scale=1.0), 

1.0 * Matern 
(length scale=1.0, 

nu=1.5) 

1**2 * Matern 
(length scale=1, 

nu=1.5) 

alpha 1e-5, 1e-3, 1e-1 1e-1 
optimizer fmin_l_bfgs_b fmin_l_bfgs_b 
restarts 3, 5 5 

KNN neighbors 3, 5, 7, 10 10 
weights uniform, distance distance 
metric euclidean, 

manhattan 
manhattan 

LRM - - default 
RFR estimators 800, 1000, 

1200,1800 
1800 

Max depth None, 10, 20 None 
Min samples 

split 
2, 4, 6 5 

Min samples 
leaf 

1, 2, 3 2 

Max features 0.3, 0.5, sqrt, 
log2 

log2 

SVR C 1, 10, 50, 100 50 
epsilon 0.01, 0.1, 0.2,0.5 0.2 
kernel linear, rbf rbf 
gamma scale, auto scale 

 
Deep Learning Model (DLM) 

Given the practical constraints associated with hyper–
parameter optimization for deep learning across mul–
tiple geographical datasets, a manually configured arc–
hitecture was implemented in this study. The design 
choices were guided by prior studies on similar fore–
casting tasks [48]. Performance was monitored using 
MAE, and early termination was applied to minimize 
overfitting. Table 6 summarizes the configuration para–
meters for DLM. 
Table 6. Training Parameters for DLM [48] 

Parameter Value 
Feature Selection Top 3 features
Input Dimension 3 (based on FS output)
Hidden Layers 128, 64, 32, 16

Activation Function relu 
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Dropout Rate 0.1 
Optimizer adam 

Loss Function MSE 
Evaluation Metric MAE 

Learning Rate Strategy adaptive 
Max Iterations (Epochs) 1000 

Batch Size 128, 64, 32, 16
Early Stopping Yes 

 
2.5  Trigonometric Cyclic Encoding (TCE) 
 
Feature Engineering (FE) is an important method for 
transforming time dependent data into a more infor–
mative and model-friendly format. This study focused 
on strategically creating and transforming time features 
to maximize the predictive power of the available 
information [14,30]. A key aspect of FE is to effectively 
handle temporal variables, acknowledge the cyclic 
nature of Month, and Day by using the TCE technique. 
Traditional time series numerical representations of 
days, and months often missed the periodicity of these 
measurements. For instance, the shift from 23:00 to 
00:00 indicates closeness rather than a significant linear 
change, which is frequently overlooked by standard 
numerical encoding methods[30]. 

The present study applied TCE technique for cyc–
lical features of time (days and months). Each temporal 
variable was broken into sine and cosine components, 
producing paired features that reflect the circular nature 
of time. This transformation helps machine learning 
models grasp the periodic relationships between time-
based data [49]. This method remains inadequately un–
explored [14]. The present study considers the cyclical 
encoding method to convert cyclic data into a format 
that is suitable to ML algorithms [14]. 

As shown in Figure 4, this study turns each time-
related value (day or month) into a circular format, so 
that the smallest and the largest values sit next to each 
other. This is achieved byusing sine and cosine func–
tions, which allow to represent time in a smooth and 
continuous way. In case of hours, the circle starts at 
midnight on the left and moves counterclockwise. This 
means that 11:59 PM is placed right next to 12:00 AM - 
just like it is in real time. The same kind of transfor–
mation is applied to both, the month and the day values. 

For days and months, the trigonometric cyclical 
transformation into sin and cosine components is exp–
ressed mathematically as follows:   

sin sin 2 xx
T

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

  (1) 

cos cos 2 xx
T

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

  (2) 

 
Figure 4. Cyclical Features (Source: Authors) 

where x is the cyclical feature value ( month or day), T 
is the period of the cycle (12 for months, 365 for days), 
xsin and xcos are the sin and cos transformed values. 

To better capture the seasonal patterns of solar ra–
diation, TCE was applied to convert the temporal vari–
ables month and day into cos and sin features to pre–
serve the periodic nature of time variables without int–
roducing artificial breaks (for instance, between De–
cember and January). Figure 5 presents the correlation 
between the TCE features and the core climatic vari–
ables for each site. For instance, in Haql, cos_month has a 
strong negative correlation with TMP (-0.72) and a 
positive correlation with RH (0.63). Similar relati–
onships are observed forTabuk, where cos_month cor–
relates at --0.75 with TMP and at 0.76 with RH. In Timaa 
and Duba, which exhibit more extreme seasonal 
variability, sin-month and cos-month both maintain mo–
derate correlation with DNI of up to -0.39. Additionally, 
the encoded features (sin_MO, cos_MO, sin_DY, 
cos_DY) remain nearly uncorrelated with each other, 
demonstrating no clear redundancy and multicollinearity. 

 
2.6 Performance Metrics 
 
The performance metrics - MAE, MSE, RMSE, R2, 
rRMSE, t-stat, MAPE, and MBE are used to assess the 
performance of the ML models. This metrics is care–
fully chosen to conduct a thorough evaluation of the 
overall performance of estimating and predicting solar 
radiation in-terms of error magnitude. The mathematical 
expressions of these metrics is presented in Table 7. In 
Table 7, the term yi is the observed value of the depen–
dent variable, ˆ iy  is the predicted value from the ML 
models, n is the number of observations, and iy  is the 
mean of the observed values. 

Table 7. Mathematical Model of Performance Metrics 

Metrics Mathematical Model Description Desired Output 

MAE 
1

1 ˆ
n

i i
i

MAE y y
n =

= −∑  
Measures the mean magnitude of 

errors between predicted and 
actual values without considering 

their direction[50,51] 

closer to 0 is better 

MSE ( )2
1

1 ˆ
n

i i
i

MSE y y
n =

= −∑  
Measures the mean squared 

differences between predicted 
and actual values, and penalises 
larger errors more heavily[50] 

closer to 0 is better  
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RMSE ( )2
1

1 ˆ
n

i i
i

RMSE y y
n =

= −∑  
Square root of MSE, providing 
error measure in the same units 

as the target variable[52] 

closer to 0 is better  
 

R2 
( )
( )

2
2

2

ˆ
1 i i

i i

y y
R

y y

⎡ ⎤−
⎢ ⎥= −
⎢ ⎥−⎣ ⎦

∑
∑

 

Explains the variation in the 
target variable that's predictable 
from the input variable(s)[53] 

closer to 1 is better 

MAPE 1

ˆ1 100
n

i i

ii

y y
MAPE

n y=

−
= ×∑  

Expresses accuracy as a 
percentage, showing the mean 

absolute percent difference 
between predicted and actual 

values[52,54] 

closer to 0% is 
better 

MBE ( )
1

1 ˆ
n

i i
i

MBE y y
n =

= −∑  
Used to evaluate bias of 
forecasting models[55] 

closer to 0 is better 

rRMSE 
( )2

1

1 ˆ

100

n

i i
i

i

y y
n

rRMSE
y

=
−

= ×
∑

 

Derived from RMSE[52]  
closer to 0% is 

better 
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Figure 5. Correlation of TCE Features and Climatic Variables Across the Six Case Study Sites 

3. RESULTS AND DISCUSSION 
 

3.1 Temporal Patterns of DNI and Meteorological 
Parameters 

 
The data used in this study covers a period of three years 
from January 1 2022 to December 31 2024. The daily 
mean values of meteorological data are used in this study, 
which are obtained from hourly mean values. Accurate 
forecasting of solar radiation relies on a clear under–
standing of the local climatic dynamics influencing 
irradiance levels. This study identifies seasonal patterns 
and site-specific environmental behaviours of irradiance 
that affect the accuracy ofML model. Figures 6 to 10 
present the trends of DNI, WS, CI, RH, and TMP, 
respectively;providing the forecasting challenges and 
regional variations present across the study locations. 

DNI values in Tabuk are consistently high, during the 
summer months (June-September), where it frequently 
reaches around 8 to 10 kWh/m²/day, with noticeable lows 
during winter, Figure 6. Riyadh exhibits moderate 
variability, with values typically ranging from 3-7 kWh/ 
m²/day and occasionally peaking above 9 kWh/m²/day 
during summer months. Haql shows the most moderate 
profile among all sites, generally maintaining values 
between 2.5 and 6.0 kWh/m²/day, with some peaks of7 
kWh/m²/day during summer. Timaa demonstrates consi–
derable fluctuation throughout the year, with values 
ranging from 2.5 to 8 kWh/m²/day. Duba presents a 
relatively stable profile with most values lying between 3 
and 7 kWh/m²/day, though it experiences some spikes of 
up to 9.0 kWh/m²/day during certain periods. AlWajh 
shows a pattern somewhat similar to Tabuk, with high 
summer values often exceeding 8 kWh/m²/day, but 
exhibits more pronounced fluctuations during winter 
months, where values drop even below 3.0 kWh/m²/day. 

AtHaql, the wind speed exhibits moderate patterns at 
10 meters above ground level (AGL), with peaks reaching 
around 6.0 m/s showing stronger winds during mid-year, 
Figure 7. Tabuk's wind profile also exhibits moderate 
chnage, with speeds typically ranging between 3.0 and 7.0 
m/s. Timaa demonstrates relatively larger fluctuations 

winds throughout the years, with occasional highs above 
9.0 m/s. Duba, a coastal site, experiences steady winds 
with rarely surges above 6.0 m/s, but generally maintains 
moderate speeds around 3.0-5.5 m/s. AlWajh presents a 
somewhat erratic pattern with notable fluctuations between 
3.0 and 7.0 m/s during three years. Umluj, a coastal site, 
experiences good winds with variations between 3.0 and 
7.0 m/s but often reach 8.0 m/s and more. 

Tabuk generally maintains higher and relatively stable 
CI values, often above 0.70, particularly during mid-year, 
while experiencing some dips during winter months, see 
Figure 8. Timaa shows moderate variability with CI values 
typically ranging between 0.45 and 0.75, with occasionally 
reaching below 0.50. Duba exhibits the same pattern as 
above with chnages between 0.5 and 0.7. At AlWajh, 
relatively consistent high values of CI , often above 0.65, 
with some lows near the end of the year are noticed. 

Umlujshows moderately stable values varying bet–
ween 0.60 and 0.70. Haql presents an interesting pattern 
with high values but more pronounced fluctuations du–
ring the winter months.Haql, Duba, AlWajh, and Umluj 
maintain relatively stable and cyclic RH levels, typically 
ranging between 40-70%, with AlWajh showing slightly 
higher summer time values more consistent levels, as 
observed from Figure 9. Tabuk and Timaa demonstrate 
more pronounced variations, with higher RH in winter 
months (reaching 80%) and lower during summer 
(dropping to 15-20%).  

With respect to ambient temperature variation over 
three years of data, all the sites, under consideration, 
show a cyclic variation with lows and highs during 
winter and summer times, as shown in Fig. 10. At Haql, 
Tabuk, and Timaa;overall lower values of temperature 
are observed during entire period compared to those at 
Duba, AlWajh, and Umluj. At first three sites, the 
temperature values reach as low as of 5°C in January 
and February and as high as 30°C during summer time 
(August and September). At Duba, Alwajh, and Umluj; 
all three coastal sites; the daily mean temperature values 
vary from 15°C to 37°C and has relatively lower 
variability in terms of annual magnitudes, Figure 10.  
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Figure 6: Direct Normal Irradiance trends across chosen sites 

 
Figure 7: Wind Speed trends across chosen study sites 

 
Figure 8: Clearness Index trends across chosen sites 
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Figure 9: Relative Humidity trends across selected sites 

 
Figure 10: Temperature trends across selected sites 

3.2 Model Performance Evaluation 
 
The study utilizes daily mean values of DNI, tempe–
rature, pressure, relative humidity, and wind speed over 
a period of three years, starting from 01 January 2022 
and ending on 31 December 2024. The daily averages 
are obtained using the hourly mean values of each 
parameter. The data was obtained from NASA POWER. 
The performance comparison of eight (8) ML 
algorithms across six distinct climatic regions in KSA is 
carried out in terms of error metrics and the resulting 
values are depicted in Figure 11.The multi-metric and 
site-specific perspective, on how each algorithm 
performs across different regions, is presented.It 
captures relative trendsand central tendencies, trade-
offs, and variability in model behaviour. 

Multi-Metric Evaluation 

In terms of MAE, models exhibit consistent variation 
across sites. The LRM notably records the highest MAE 
values atmost of the locations, peaking at Timaa 
with0.45 and Tabuk with0.4250. The ANN and DLM 

models show relatively lower MAE values of 0.32 and 
0.31 for Umluj and Duba; respectively. A similar trend 
holds true for MSE and RMSE. However, RFR demon–
strates relatively poor performance in Timaa (MSE: 
0.335, RMSE: 0.575), while DLM and ANN maintain 
high accuracy at Dubaand Umlujwith MSE values of 
0.150 and 0.155, respectively. 

Regarding R², the DLM model maintains high 
performance across all sites, reaching 0.92 in Haql, 
Tabuk, and Duba.Similarly,ANN performs well, 
particularly in Haql(R²=0.924) and Tabuk, Timaa, 
Duba, and AlWajh(R²>0.91). However, models like 
KNN and GBR show relatively low values ofR², with 
KNN reaching a low of 0.865in AlWjhand the least is 
recorded forRFR in AlWajhat 0.851. SVR recorded the 
highest R² value of 0.893in Timaa.  

Regarding MAPE, performance diverges more 
sharply. RFR and KNN report the highervalues between 
5.11 and 7.89% corresponding to Duba for DLM and 
Timaa for RFR models. In general, the MAPE values 
are in the acceptable range and ANN and DLM models 
seem to be outperforming the others. MBE values 



FME Transactions VOL. 54, No 1, 2026 ▪ 137
 

further differentiate model tendencies. ANN tend to 
show slightly negative biases of -0.013, -0.065, -0.013, 
and -0.007 at Haql, Tabuk, Alwajh, and Umluj; as can 
be observed from Radar diagram of Figure 11. DLM 
model showed slight positive biases at five sites in 
terms of MBE values varying from 0.025 to 0.214 at 
Umluj and Timaa with only negative bias of -0.00006 at 
AlWajh. However, GPR and SVR exhibit lower or 
slightly negative and positive biases atsomesites.  

From the t-stat, values vary between -2.053 and 
6.064 corresponding to models ANN and DLM at 
Tabuk and Timaa. It is worth to mention that t-stat 
values clustered around cluster around 1–2 and -0.1 to -
2.0 for most models. rRMSEalso validatedDLM and 
ANN’s robustness, with values consistently below 9% 
across most sites. DLM reports the lowest rRMSEof 
5.99% at Duba, while LRM, RFR, and KNN frequently 
exceed 8%, particularly. 

 
Figure 11: Multi-Metric Performance Across Sites 

Multi-Site Evaluation 

In Haql, ANNregistered the lowest RMSE of 
0.3941kWh/m²/day and the highest R² of 0.9241. DLM 
also showed the lowest rRMSE (5.990%) and a positive 
bias in MBE (0.08564), indicating a slight over-estima–
tion at Duba. ANN closely followed with an RMSE of 
0.4113 and R² of 0.9143. LRM showed a reasonable R² 
(0.8851) butproduced a higher RMSE (0.4762) and 
MBE (0.0054). The highest MAE (0.4464) and RMSE 
(0.5599) in Dubawere associated with DLM and LRM, 
with an associated rRMSE of 8.68%. In Tabuk, ANN 
again produced the lowest RMSE at 0.4484, paired with 
the highest R² of 0.919. DLM closely matched this with 
an RMSE of 0.4513 and R² of 0.918. GPR also 
performed well (RMSE: 0.4541, R²: 0.917) and a 
MAPE of 5.52% against DLM (5.22%). LRMrecorded 
the highest error values atthis location, with RMSE of 
0.546and rRMSE of 7.75%. KNN, SVR,and GBR also 
trailed behind, exhibiting RMSE values above 0.46and 
lower R² values under 0.92.  

For Timaa, both ANN and GBR demonstrated 
competitive performance, with ANN achieving a lower 
RMSE (~0.469) and MAPE (~5.9%). The error spread 
among models was smaller at coastal sites, indicating 
relatively homogeneous radiative conditions. Never–
theless, linear and simpler models showed inferior pre–
dictive performance.At Duba, the coastal site, model 
performance showed increased atmospheric complexity 
due to humidity and aerosol effects. ANN provided the 
lowest RMSE (~0.486) and MAPE (~6.2%), while GBR 
and RFR followed closely but with slightly higher bia–
ses. The increased MAE and RMSE values compared to 
inland sites highlight the challenges of solar irradiance 
forecasting under marine-influenced conditions. 

In Al Wajh, GBR marginally outperformed ANN in 
terms of RMSE (~0.498), although ANN maintained a 
lower MAE and comparable MAPE. This suggests that 
ensemble models can better capture localized 
nonlinearities associated with coastal aerosol loading 
and cloud intermittency. Umluj presented a bit chal–
lenging condition for accurate prediction, with all 
models exhibiting higher error levels compared to other 
sites. RMSE values exceeded 0.50 and MAPE appro–
ached 7–8% for most models, particularly tree-based 
and kernel-based approaches. ANN still remained 
among the top performers but with reduced accuracy. 
These results highlight the need for site-specific tuning 
or hybrid modelling approaches for Umluj. 

Across all six sites, ANN and GBR consistently 
ranked among the top-performing models, but the 
magnitude and ranking of errors varied by location. This 
site-wise variability in MAE, RMSE, MAPE, and MBE 
underscores the strong influence of local climatology 
and confirms thatno single machine learning model is 
universally optimalfor solar irradiance forecasting 
across the diverse geographic and atmospheric environ–
ments of Saudi Arabia. 

Figure 12 presents the model performance with 
respect to the variation in target variable (WS) expla–
ined by the models for specific site-model combinations 
for two locations (Timaa and Duba) and for four models 
(RFR, ANN, SVR, and GBR) only for clarity.  
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Figure 12: Actual vs. Predicted DNI across Sites and Models. 

 
Figure 13. Prediction Patterns and Absolute Error Trends 

The complete results on all the sites and for all the 
models are included in Figure A-1 in appendix-A. As 
shown in Figure A-1, ANN and DLM consistently 
demonstrate superior performance and near-perfect fits, 
with R² values exceeding 0.91atHaql, Tabuk, Timaa, 
Duba, and Umluj. On the other hand, LRM and RFR 
yielded the lowest R2 values and showed more scattered 
prediction patterns, particularly in Timaa, AlWajh, and 
Umluj. Also, ANN demonstrated the consistently high 
R² scores across various sites, achieving an R² of 0.9241 
in Haql. Similarly, in Tabuk, Timaa, Duba, and Umluj, 
ANN attained R² values of 0.9194, 0.9180, 0.9143, and 
0.9097, respectively. In Alwajh, ANN recorded an R² of 
0.8884, SVR recorded 0.8726 and LRM showing some 
promise with 0.8786, Figures 12 and A-1.  

DLM performed remarkably well, recording the 
higher R² values of 0.9199, 0.9184, 0.9213, 0.9041 in 

Haql, Tabuk, Duba, and Umluj; respectively. However, 
the R2 values at Timaa (0.8979) and Alwajh (0.8879)are 
a bit less than th0se discussed earlier. 

SVR showed strong performance in Tabuk (0.9111), 
Duba (0.9023), and Timaa(0.9149), closely  outper-
forming ANN and DLM in some instances, Figure 12. 
However, R² dropped in Haql(0.8929), AlWajh (0.8726) 
and Umluj(0.8934), see Figure A-1. GBR and GPR both 
produced moderately strong results, the former peaked 
in Tabuk (R² = 0.9120) and dropped to 0.8701 in 
AlWajh, while the latter maintained a relatively consis–
tent performance across sites, scoring R² values around 
0.905 and more.  KNN demonstrated reasonably good 
fits in Haql(0.9129), Tabuk (0.9123), and Duba(0.9110), 
but performance compromise dslightly in Timaa 
(0.8954), AlWajh (0.8635), and Umluj(0.8851). RFR 
delivered R² of0.8555to 0.9005 at AlWajh and Duba. 
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LRM achieved highest R² value in Haql (0.8968) and 
lowest in AlWajh (0.8786), Figure A-1. 

In addition to overall fit (see Figure A-1), the 
temporal performance of each model was assessed over 
the entire period. Figure 13 presents a comparative time 
series prediction trend of predicted versus actual values 
for Timaa and Duba covering RFR, ANN, SVR, and 
GBRmodels for clarity purpose only. 

 
3.3 Temporal Performance Evaluation 

 
However, the complete results for all the locations and 
the models are included as Figure A-2 in Appendix-A. 
In Figure 13, actual and predicted daily DNI values are 
plotted along with their corresponding absolute errors. 

In Haql, predictions exhibit consistent seasonal trac–
king across most models. ANN, DLM, and SVR show 
relatively smooth alignment with observed values, with 
visibly lower absolute errors across the mid-year high-
radiation months. However, LRM, RFR and KNN disp–
lay intermittent spikes in error, particularly around tran–
sitional periods like April and October. For Tabuk, 
models ANN, SVR and DLM demonstrate minimal di–
vergence from actual values, especially during peak 
summer, when the atmospheric conditions are relatively 
stable. The absolute error plots for SVR in Timaaremain 
lessaround the baseline throughout the year. On the 
other hand, LRM and KNN show pronounced error 
peaks between April and August.  

In Duba, the predictive trajectories for DLM and 
ANN follow the actual DNI curve with considerable 
consistency, particularly from June through September.  
GBR and GPR show stable performance but RFR re–
veals sharp deviations during the summermonths. 
AlWajh’s results highlight increased volatility in pre–
dictions across all models. KNN and LRM, showed 
larger deviations between predicted and actual values 
during the second and fourth quarters of the year. ANN 
maintains relative proximity to observed values during 
high solar periods, but frequent smaller oscillations in 
the absolute error trace indicate continuous minor pre–
diction fluctuations.  

In Umluj, both ANN and DLM show close agree–
ment with actual DNI values for much of the year. The 
absolute error profiles remain suppressed throughout 
most of the year, notably from May to September. SVR 
and GBR also perform betterbut exhibit occasional 
surges in error, particularly during brief cloudy intervals 
typical in coastal regions.  

It can be summarized that across all the sites, the 
non-linear ML models such as ANN, DLM, and GBR 
consistently provide excellent agreement between the 
predicted and observed DNI values, as observed from 
Figure 13 and Figure A-2. It is noticed that the site de–
pendent climatic conditions strongly influence the 
predictability of the models with inland sites showing 
close agreement and coastal sites larger deviations.  
 
3.4 Impact of Trigonometric Cyclical Encoding 

(TCE) 
 
The study carried out a comparative analysis of feature 
importance to quantitatively evaluate the efficacy of 

TCE. It is analyzed that how TCE influences the 
explanatory power of temporal features. This was 
accomlished by training two separate RFR models 
under identical conditions. The first model utilised raw 
integer representations of temporal features (Month and 
Day), while the second employed cyclic encoded 
features (sin Month, cos Month, sin Day, and cos Day). 
The SHAP framework was then applied to both models 
to obtain a rigorous and consistent measure of each 
feature’s marginal contribution to the ML 
algorithm[56]. For direct comparison, the sine and 
cosine components of each temporal concept were 
aggregated to represent the total impactof ‘Cyclical 
Month’ and ‘Cyclical Day’ features.   

The Figure 14 presents SHAP summary plots for six 
sites (Hag1, Tabuk, Timaa, Duba, Alwajh, and Umluj), 
highlighting the relative importance and directional 
influence of input features on the model predictions. The 
results indicate that CI is the dominant predictor, 
exhibiting the widest spread of SHAP values, with higher 
CI values consistently contributing positively to the 
model prediction and lower values exerting a negative 
impact. The RH and TMP follow in importance, 
indication moderate but effective contributions, with 
mixed positive and negative SHAP distributions. The 
seasonal indicators (sin_MO and cos_MO) provide 
annual variability is captured by the model but cannot be 
the primary driver of predictions. In contrast, daily cycle 
variables (sin_DY and cos_DY) and WS exhibit SHAP 
values tightly clustered around zero. This simply means 
that these parameters have a marginal role in shaping the 
model output. Overall, the SHAP analysis confirms that 
the model behavior is mainly dominated by CI and other 
meteorological parameters. 

The mean absolute SHAP importance of temporal 
features (month and day) using raw versus cyclical 
encoding across six sites (Haql, Tabuk, Timaa, Duba, 
Alwajh, and Umluj) is shown in Figure 15. For all 
locations, cyclical encoding markedly enhances the 
importance of the month feature, with substantial relative 
increases ranging from about 50% to over 130%, 
indicating a much-improved capture of seasonal 
periodicity. The day feature also shows consistent, though 
smaller, gains under cyclical encoding, reflecting better 
representation of intra-month continuity. Among the 
sites, Timaa and Duba exhibit the strongest sensitivity to 
cyclical month encoding, while Alwajh and Umluj show 
comparatively moderate but still notable improvements. 
Overall, the outcome demonstrates that cyclical encoding 
more effectively represents temporal periodicity than raw 
encoding, leading to stronger and more physically 
meaningful contributions of temporal features to the 
model across all sites. 

 
4. CONCLUSION 
 
This study comprehensively evaluated the performance 
of eight ML models for forecasting solar radiation 
across six climatically diverse sites in Saudi Arabia. The 
models evaluated include RFR, LRM, ANN, KNN, 
SVR, GBR, GPR, and DLM. Eight statistical metrics 
were used to assess predictive accuracy and genera–
lizability across each site. 
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Figure 14. Comparison of SHAP summary of cyclically encoded features and raw features 

The key findings, derived from an extensive multi 
metric-site evaluation, are summarized as follows: 
• Deep Learning (DLM) and Artificial Neural Net–

work (ANN) models demonstrated superior and 
consistent performance across most locations, with 
DLM achieving the lowest RMSE (as low as 
0.3941 kWh/m²/day in Duba) and ANN showing 
remarkable stability and low errors (e.g., MAPE of 
5.23% in Tabuk). 

• Model effectiveness was significantly influenced by 
geographical and climatic conditions. Support Vec–
tor Regression (SVR) excelled in specific arid in–
land regions like Timaaand Tabuk, while other 
models such as RFR and KNN exhibited greater 
performance volatility. 

• The implementation of Trigonometric Cyclical 
Encoding (TCE) for temporal features substantially 
enhanced model learning. A comparative analysis 
revealed that TCE increased the feature importance 
of temporal signals by over 50.1% to131.6% for 
monthly cycles and 13.4% to 58.4% for daily 
cycles, enabling models to more effectively capture 
fundamental periodic patterns in solar radiation. 

• Time series and error analysis confirmed that ANN 
and DLM maintained the most stable prediction 

accuracy, particularly during high solar radiation 
seasons, whereas other models showed wider 
fluctuations. 

Finally, based on the entire data analysis, the models are 
prioritised and ranked from 1 to 8, as given in Table 8. 
Table 8. Ranking of Model Performance. 

Model Key Strengths Key Limitations Rank 

ANN 

Excellent MAPE 
and t-stat in 
variable climates, 
adapts to non-
linearity 

Requires careful 
tuning and larger 
datasets 

1 

DLM 
Competitive in 
high-data 
scenarios 

Exhibits 
systematic MBE 2 

GPR 
Low bias, reliable 
in moderate 
variability 

Computationally 
intensive for large 
datasets 

3 

KNN 
Good performance 
in stable inland 
climates 

Poor in high-
variability sites 4 

SVR Adequate in linear 
regimes 

Poor in non-linear, 
climates; sensitive 
parameter choice 

5 

GBR Lowest 
MAE/RMSE, 

Slightly higher 
computational cost 6 



FME Transactions VOL. 54, No 1, 2026 ▪ 141
 

minimal bias, 
robust across all 
sites and 
irradiance levels 

LRM Simple and fast 
Highest errors and 
unable to capture 
non-linearity 

7 

RFR 
Consistent and 
robust in high-
irradiance 

Slightly less 
accurate than GBR 8 

 
Figure 15. Comparison of aggregated SHAP importance for 
raw versus cyclically encoded temporal features 

4.1 Limitations and future work 
 
While this study provides a robust evaluation of ML 
models for intra-annual solar radiation forecasting, it is 
important to note its limitation regarding the temporal 
scope of the dataset. The use of data from a single 
calendar year (2023), while meticulously analyzed, may 
not encompass the full spectrum of inter-annual climatic 
variability and extreme weather anomalies specific to the 
regions of Saudi Arabia. Consequently, the absolute 
values of the reported error metrics should be inter–preted 
within this context. Future work will focus on expanding 
the dataset to include multiple years of historical data. 
This will allow for the development of more generalized 
models that are resilient to long-term climatic shifts and 
rare meteorological events, further enhancing their 
operational reliability for grid integration. 
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Figure A-1: Actual vs. Predicted DNI across Sites and Models. 
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Figure A-2. Prediction Patterns and Absolute Error Trends 

 
ПРЕДВИЂАЊЕ ДИРЕКТНОГ СУНЧЕВОГ 

ЗРАЧЕЊА КОРИШЋЕЊЕМ 
ВИШЕМОДЕЛСКЕ ЕВАЛУАЦИЈЕ СА 

ТРИГOНОМЕТРИЈСКИМ ЦИКЛИЧНИМ 
ПРОЦЕСОМ 

 
Л.Б. Рашид, Ш.Џ. Шуџа, Ш. Рехман 

 
Тачно предвиђање обновљивих извора уопште и 
сунчевог зрачења је кључно за оптималну 
интеграцију система соларне енергије. Студија 
истражује осам модела машинског учења, наиме 
модел линеарне регресије (LRM), регресор случајне 
шуме (RFR), регресор градијентног појачавања 
(GBR), Гаусову процесну регресију (GPR), вештачку 
неуронску мрежу (ANN), k-најближе суседе (NN), 
регресију вектора подршке (SVR) и дубинско учење 
(DL) за предвиђање директног сунчевог зрачења на 
шест климатски различитих локација у Саудијској 
Арабији. Модели се евалуирају коришћењем осам 

статистичких метрика, заједно са временским 
серијама и анализама апсолутних грешака. У овом 
раду је уведено тригонометријско циклично 
кодирање (TCE), које је значајно побољшало 
темпорално учење. Компаративна анализа заснована 
на SHAP-у открила је да је TCE побољшао 
објашњавајућу моћ временских карактеристика за 
49,26% и 53,40% за месечне и дневне циклусе. 
Резултати показују да је DL постигао најнижу 
средњоквадратну грешку (RMSE) и највиши 
коефицијент детерминације, док је ANN константно 
показивао високу тачност на свим локацијама. 
Анализе грешака и временских серија указују на 
стабилна предвиђања ANN и DL; док су LR, RFR и 
k-најближи суседи (NN) показали веће флуктуације. 
Предложена TCE техника је додатно побољшала 
резултат модела одржавајући укупну подобност 
модела између 81,79% и 94,36% у свим сценаријима. 
Ова студија појачава ефикасно планирање интег–
рације соларне енергије у различитим климатским 
условима.

 


