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In the field of robotics, four tasks of autonomous robots such as
navigation, localization, object tracking, and motion planning, play a
crucial role to ensure the autonomy and intelligence of system in the
complex and diverse environment. All of its operation relies on the working
ability of laser scanner or LiDAR (Light Detection and Ranging) sensor
which becomes a promising tool for these tasks due to the accurate
distance measurement and wide field of view. The objective of this paper is
to evaluate and compare the working performance between 2D and 3D
LiDAR sensor in the specific tasks. In the different applications, 2D LiDAR
sensor scans on a single plane while the 3D one uses lasers to capture
precise 3D data of objects and environments. A series of real-world
experiments are conducted in a laboratory setting, focusing on three main
tasks: object detection and tracking, mapping capabilities, and motion
planning. Owing to these practical tests, the results highlight the strengths
and weaknesses of both 2D and 3D LiDAR sensors in such tasks.
Experimental results show that, compared with 2D LiDAR, the 3D LiDAR
reduces measurement error by up to 59% in the Y-axis, improves human
detection accuracy by 28.8% under occlusion conditions, and eliminates
navigation collisions caused by planar blind spots, albeit at the cost of a
lower frame rate.

Keywords: Autonomous robot, precise navigation, Simultaneous Locali—
zation and Mapping, 2D LiDAR, 3D LiDAR.

1. INTRODUCTION

Autonomous mobile robots have become an essential
component of modern industrial and service
applications [1-3], including warehouse logistics,
manufacturing automation, inspection, and human—
robot collaborative environments. To operate safely and
efficiently, such robots must be capable of perceiving
their surroundings [4], estimating their own position [5],
identifying obstacles and humans [6], and planning
collision-free paths in real time. Among the available
perception technologies, LiDAR sensors are widely
adopted due to their robustness to lighting conditions,
accurate distance measurement, and wide field of view.
In robotic navigation systems, LiDAR sensing un—
derpins several fundamental capabilities, most notably
environment mapping, human and obstacle detection,
and path planning or optimization. The performance of
these tasks is directly influenced by the characteristics
of the sensing modality employed. In practice, LIDAR
sensors are commonly categorized into 2D LiDAR and
3D LiDAR, which differ significantly in sensing
dimensionality, data density, computational require—
ments, and cost. Selecting an appropriate LiDAR

Received: October 2025, Accepted: January 2026
Correspondence to: Ha Quang Thinh Ngo, FPT
University, Ho Chi Minh City, Vietnam

E-mail: thinhnhq2@fpt.edu.vn

E-mail: nt.phuong@hutech.edu.vn

doi: 10.5937/fme2601146T

© Faculty of Mechanical Engineering, Belgrade. All rights reserved

configuration is therefore a critical design decision in
autonomous robotic systems [7-9].

A 2D LiDAR typically performs planar scanning at
a fixed height, providing range measurements in a
single horizontal plane. Owing to its high update rate,
low computational load, compact size, and relatively
low cost, 2D LiDAR has been extensively deployed in
indoor navigation, warehouse automation, and struc—
tured industrial environments [10]. However, the inhe—
rent limitation of planar sensing introduces blind spots
for objects located above or below the scanning plane,
which may degrade performance in environments with
height-varying obstacles or complex geometry.

In contrast, a 3D LiDAR employs multi-layer laser
scanning to acquire three-dimensional point cloud data,
enabling comprehensive spatial perception of the envi—
ronment. This capability allows robots to detect obs—
tacles of varying height, navigate through cluttered or
unstructured environments, and operate reliably in
scenarios where vertical information is essential [11].
These advantages come at the expense of higher cost,
increased sensor weight, greater computational demand,
and typically lower frame rates compared to 2D LiDAR
systems.

Although the advantages and limitations of 2D and
3D LiDAR technologies are widely recognized in
general terms, many existing studies investigate these
sensors under different platforms, algorithms, or appli—
cation contexts, making it difficult to draw fair and
practical comparisons [12-14]. In particular, some

FME Transactions (2026) 54, 146-158 146



results of investigations are often inferred from task-
specific studies or simulation-based evaluations, rather
than from controlled experimental comparisons conduc—
ted on the same robotic platform under identical opera—
ting conditions. Moreover, while prior research has
addressed mapping accuracy, human detection, or navi—
gation performance individually, a unified experimental
evaluation covering all three tasks using both 2D and
3D LiDAR remains limited. This gap makes it chal-
lenging for engineers and practitioners to objectively
assess the trade-offs between sensing dimensionality,
accuracy, robustness, and computational efficiency
when designing real-world robotic systems.

Motivated by these limitations, this study aims to
provide a systematic and experimentally grounded com—
parison of 2D and 3D LiDAR sensors for autonomous
navigation applications. Rather than proposing new
perception or navigation algorithms, the focus of this
work is on system-level evaluation, where both sensing
modalities are assessed under identical experimental
conditions on the same mobile robot platform. Speci—
fically, the performance of 2D and 3D LiDAR sensing
is evaluated with respect to three representative tasks:

1. Mapping accuracy, including measurement er—

ror, standard deviation, and variance;

2. Human detection performance, particularly un—
der occlusion and cluttered conditions;

3. Path optimization and navigation behavior, inc—
luding collision avoidance and trajectory
robustness.

By conducting repeated real-world experiments in a
controlled laboratory environment, this work seeks to
clarify when the additional complexity of 3D LiDAR is
justified and when 2D LiDAR remains a sufficient and
efficient solution.

The main contributions of this paper are summarized
such as (i) Unified experimental framework: A single
wheeled mobile robot platform integrating both a 2D
LiDAR and a 3D LiDAR sensor is developed, enabling
fair and direct comparison under identical sensing range,
field-of-view, and environmental conditions, (ii) Multi-
task comparative evaluation: The study experi—-mentally
contrasts 2D and 3D LiDAR performance across map—
ping, human detection, and path optimization tasks using
consistent metrics and repeated trials, (iii) Quantitative
system-level insights: Measurement accuracy, detection
reliability, frame-rate behavior, and navigation robustness
are analyzed to reveal practical trade-offs between planar
and volumetric sensing, (iv) Application-oriented gui—
dance: The results provide evidence-based recommen—
dations for LiDAR sensor selection in industrial
autonomous navigation applications.

The remainder of this paper is organized as follows.
Section 2 reviews related work on 2D and 3D LiDAR-
based mapping, human detection, and path optimization,
highlighting existing limitations and open challenges.
Section 3 introduces the technical preliminaries and
methodological foundations relevant to the studied
tasks. Section 4 presents the experimental setup and de—
tailed validation results for both LiDAR configurations.
Finally, Section 5 discusses the findings, potential
prospects, and future research directions, followed by
the conclusions.
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2. PREVIOUS WORKS
2.1 LiDAR-Based Mapping and Localization

LiDAR sensors have been extensively used for robot
mapping and localization due to their ability to provide
accurate range measurements independent of ambient
lighting conditions. Early and widely adopted appro—
aches rely on 2D LiDAR-based simultaneous localiza—
tion and mapping (SLAM), where planar laser scans are
used to estimate robot pose and construct occupancy grid
maps [15,16]. These methods have demonstrated reliable
performance in structured indoor environments such as
corridors, factories, and warehouses, benefiting from high
scan rates and relatively low computational cost.

However, several studies [17-19] have reported that
2D LiDAR-based mapping suffers from limitations
when deployed in environments containing height-vary—
ing obstacles, uneven terrain, or overhanging structures.
Because only a single horizontal scanning plane is
observed, important spatial information may be omitted,
leading to localization drift or incomplete maps.

To address these limitations, 3D LiDAR-based map—
ping approaches [23-25] have been proposed, levera—
ging multi-layer scanning and dense point clouds to
generate three-dimensional maps. Such methods have
shown improved robustness in complex environments,
including outdoor scenes, cluttered indoor spaces, and
semi-structured industrial settings. Prior studies report
that the inclusion of vertical information can signifi—
cantly improve map consistency and localization accu—
racy, particularly in scenarios where planar assumptions
are violated.

Despite these advantages, 3D LiDAR-based map—
ping typically incurs higher computational complexity,
increased data-processing requirements, and greater sys—
tem cost [26]. As a result, many works focus on
optimizing point cloud processing pipelines or selec—
tively reducing data density, highlighting an inherent
trade-off between mapping fidelity and system efficiency.

2.2 Human Detection and Obstacle Perception
Using LiDAR

Human detection is a critical capability for mobile
robots operating in shared environments, particularly in
industrial and service applications where safety is
paramount. LiDAR-based human detection methods co—
mmonly rely on geometric clustering, feature extraction,
and learning-based classification applied to range mea—
surements.

For 2D LiDAR, human detection approaches [20-22]
often exploit leg patterns, shape descriptors, or temporal
motion cues extracted from planar scans. These methods
are computationally efficient and have demonstrated
good performance in controlled indoor environments.
However, their effectiveness decreases in crowded
scenes, under occlusion, or when humans adopt non-
standard postures, due to the lack of height information.

In contrast, 3D LiDAR-based human detection met—
hods [27-30] benefit from volumetric perception, allo—
wing the extraction of height, body shape, and spatial
continuity features. Prior research shows that 3D point
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cloud representations can improve detection robustness
in complex and dynamic environments, especially
where partial occlusions occur. Nevertheless, these app—
roaches often require more sophisticated data processing
and higher computational resources.

Existing studies typically evaluate human detection

independently, often under different experimental setups
or application assumptions. As a result, direct and fair
comparisons between planar and volumetric LiDAR
sensing for human detection remain relatively limited

[31, 32].

performance either using 2D or 3D LiDAR
Table 1. List of the cutting-edge techniques in related fields.
Type of | Publication Author(s) Fusing device(s) Classification Outcome(s) Challenge(s)
laser year
scanner
2021 Liu, R. etal Hokuyo URG-04LX, Mapping This approach that Growing the
[18] Decawave DWM1001, was proposed has as number of UWB
wheel encoder high as 85.5% nodes improves
reduction in mapping map quality, but
error, and reaches up also improves
to 0.19900m average computational
error using four cost, and does not
UWB nodes for work well with
indoor area of large open or low-
4000m? feature areas
unless used in
conjunction with
UWB
2021 Randelovié, D. Garmin LIDAR-Lite Mapping By combining Significant
M. et al [19] v3HP, HC-SR04 readings from calibration and
Ultrasonic, Sharp several inexpensive filtering is needed
GP2Y0A710KOF sensors, the system to normalize
Infrared rangefinder, would better handle barometric
Bosch BME280 environmental readings and map
Barometric change (e.g., response times to
temperature/ true altitude
humidity changes
~ fluctuations) than if
< it had any individual
-@] sensor alone
o) 2023 Yao, Q. Y.etal | 2D LiDAR, DBSCAN Human The system identifies Some falling
A [20] detection aberrant trajectories maneuvers were
associated with a fall classified as
and gives real-time walking path
alerts anomalies,
especially when
people walked out
of view of the
LiDAR
2020 Ngo, H. Q. T. Hokuyo URG-04LX, Path Researchers Its ability of
etal [21] positioning sensor, optimization | developed the fused autonomy and the
Realsense d435 method from accurate tracking
multiple sensors to error of human-
navigate the shortest aware navigation
path in front of was not mentioned
patients
2022 Nubha, H. et al 3D LiDAR Path The RELM model Performance of
[22] optimization uses observations RELM is
only for 1040 m dependent on
heights to careful tuning of
extrapolate wind the regularization
speed parameter (D) and
number of hidden
neurons (M)
2021 Koide, K. et al 3D LiDAR sensor, Mapping This technique The voxel
[23] GPU-accelerated CPU ensured consistency | matching cost term
gé across the whole is prone to local
A map, even in huge minima, and
— environments with solutions obtained
8 loop closures may be resolution
and environment
density dependent

148 = VOL. 54, No 1, 2026

FME Transactions




2023 Yin, H. et al A Velodyne VLP-16 Mapping It reduces setup and There are some
[24] 3D LiDAR, BIM- computation costs in map points
based semantic map static environments mislabeled or
with a maximum of ambiguously
34% decrease in labeled and this
translation error work cannot
handle global re-
localization from
scratch
2024 Shao, W. et al 3D+RGB IP67 Kit Human Merging the work Manual subject
[25] detection provides better F1 segmentation and
score (17.1%) and annotation are
accuracy up to 0.807 limited to only
four-participant
datasets
2023 Wang, J. et al Velodyne HDL-64E, Path Localization is The method
[26] VLP-16 optimization | performed frame-to- assumes good
keyframe only, initial
without any loop correspondence
closure usage, which | between keyframes
in some scenes may and LiDAR
not always be frames. Poor
feasible in real-world | initialization may
scenarios still lead to
divergence

2.3 LiDAR-Based Path Planning and Navigation

Path planning and navigation constitute another major
application area of LiDAR sensing. In many robotic
systems [33, 34], LiDAR-derived maps and obstacle
representations serve as inputs to local and global plan—
ners responsible for collision avoidance and trajectory
generation.

2D LiDAR-based navigation has been widely adop—
ted in indoor robotics due to its simplicity and
efficiency. Numerous studies [35-37] demonstrate that
planar sensing is sufficient for navigation in environ—
ments where obstacles are predominantly vertical and
well-represented at the scanning height. However,
failures may occur when obstacles are missed due to
height variation, leading to unsafe navigation behavior.

3D LiDAR-based navigation, on the other hand,
enables robots to reason about the environment in three
dimensions, improving obstacle avoidance and path
robustness. Prior works [38, 39] report smoother tra—
jectories and enhanced safety in cluttered environments.
Nonetheless, these benefits must be weighed against
increased computational burden and system complexity.

As summarized in Table 1, recent studies employing
2D LiDAR primarily focus on indoor mapping, human
detection, and short-range path optimization, benefiting
from high frame rates and low computational cost [40-
42]. However, these approaches frequently report
limitations related to planar sensing, including reduced
robustness under occlusion, sensitivity to obstacle
height, and degraded performance in cluttered or low-
feature environments. In contrast, 3D LiDAR-based
approaches demonstrate superior mapping consistency
and improved detection accuracy, with reported reduc—
tions in localization or translation error of up to 34% in
complex environments [43, 44]. These advantages come
at the expense of increased computational complexity
and lower frame rates.
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3. METHODOLOGY AND TECHNICAL
PRELIMINARIES

This part presents the technical foundations and rese—
arch methodology adopted in the present study. Unlike
Section 2, which reviews related literature, the tech—
niques described here correspond to the algorithms and
system components actually implemented in the experi—
mental validation unless otherwise stated.

3.1 System Overview

The experimental system is built around a wheeled mo—
bile robot equipped with interchangeable LiDAR sen—
sing configurations. The robot operates within a cont—
rolled indoor environment and executes identical per—
ception and navigation tasks using either a 2D LiDAR
or a 3D LiDAR sensor. The overall processing pipeline
consists of four main stages:

1. LiDAR data acquisition

2. Environment representation and mapping

3. Human and obstacle detection

4. Navigation and path execution
All system components are implemented within the
Robot Operating System (ROS) framework to ensure
modularity, reproducibility, and consistent data
handling across experiments.

3.2 LiDAR Data Representation

3.2.1 2D LiDAR Data

The 2D LiDAR provides planar range measurements in
polar coordinates, represented as:

Sop = (136, )},]il wr? M

where r; denotes the measured distance and 6; the
corresponding scan angle. These measurements are
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transformed into Cartesian coordinates for mapping and
obstacle detection tasks.

3.2.2 3D LiDAR Data

The 3D LiDAR produces multi-layer range measure—
ments that form a three-dimensional point cloud:

M

i=l1

Pip ={(x. 1.2} @
Compared to 2D scans, 3D point clouds provide
explicit vertical information, enabling volumetric envi—
ronment representation. To maintain computational ef—
ficiency, point cloud preprocessing includes downsam—
pling and outlier filtering prior to further processing.

3.3 Mapping Methodology

Mapping is performed using a Graph SLAM-based

framework, which is applied consistently for both sen—

sing configurations to ensure a fair comparison.

e Nodes represent robot poses over time.

e  Edges encode relative pose constraints derived from
LiDAR measurements and odometry.

For the 2D LiDAR configuration, constraints are
generated from planar scan matching, while for the 3D
LiDAR configuration, constraints are derived from point
cloud registration. Importantly, the underlying SLAM
formulation remains unchanged; only the dimensionality
of the sensory input differs. The resulting maps are:

e 2D occupancy grids for the 2D LiDAR case
e 3D spatial representations for the 3D LiDAR case

This design isolates the impact of sensing dimen—

sionality on mapping performance.

3.4 Human and Obstacle Detection

3.4.1 Detection Using 2D LiDAR

Human and obstacle detection using 2D LiDAR relies
on segmentation of planar scan data. Consecutive scan
points are grouped into clusters based on Euclidean
distance thresholds. Extracted clusters are then clas—
sified based on geometric features such as width,
curvature, and temporal consistency.

3.4.2 Detection Using 3D LiDAR

For the 3D LiDAR configuration, detection is perfor—
med on point cloud data using three-dimensional Eucli—
dean clustering. Height information is explicitly
considered to distinguish humans and obstacles from
background structures. Temporal filtering is applied to
improve detection stability across consecutive frames.

In both configurations, the detection output is rep—
resented in the robot’s local coordinate frame and
forwarded to the navigation module.

3.5 Navigation and Path Execution
Navigation is implemented using a standard local plan—

ning framework that consumes LiDAR-derived obstacle
information. The planner generates collision-free velo—
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city commands in real time based on the robot’s current
pose, goal position, and perceived environment.

The navigation logic remains identical across both
sensing configurations. Any differences in navigation
performance therefore stem from differences in envi—
ronmental perception rather than from changes in
planning algorithms.

3.6 The Proposed Method

To eliminate ambiguity regarding the scope of this
chapter, the techniques actually employed in this work
are summarized as follows:

e  Mapping: Graph SLAM with planar scan matching
for 2D LiDAR and point cloud registration for 3D
LiDAR.

e Human detection: Geometric clustering-based
detection for both sensing modalities, extended
with height information for 3D LiDAR.

e Navigation: LiDAR-based local path planning with
real-time obstacle avoidance.

The contribution lies in the controlled experimental
application and comparison of these established
techniques under identical conditions.

4. EXPERIMENTAL VERIFICATIONS
4.1 Platform Setup

Guided by the performance indicators and limitations
reported in Table 1, the experimental validation focuses
on three representative tasks—mapping accuracy, hu—
man detection reliability, and path optimization effi—
ciency—using identical sensing ranges and operating
conditions for both 2D and 3D LiDAR. To validate the
working performance of those sensors, a series of
experiments in the laboratory level are conducted. In
our tests, the experimental platform as Fig. 1 is based on
a Pioneer 3-AT wheeled mobile robot, which provides
sufficient payload capacity, stability, and modularity for
multi-sensor integration. The robot is equipped with two
LiDAR sensors: a Hokuyo URG-04LX-UGO01 2D
LiDAR and a Velodyne VLP-32C 3D LiDAR, mounted
at different heights to reflect typical deployment scena—
rios in indoor robotic navigation. This 2D LiDAR is
mounted near the base of the robot and provides planar
range measurements for close-range obstacle detection
and mapping. The 3D LiDAR is mounted on the top
plate of the robot and provides multi-layer point cloud
data for full three-dimensional environmental percep—
tion. Our configuration is especially useful for appli—
cations requiring fine-grained navigation and localiza—
tion in narrow, constrained spaces, i.e., indoor environ—
ments or those with a high density of obstacles.

All experiments in this study were conducted fol—
lowing a fixed and repeatable protocol to ensure the re—
liability and consistency of the results. For each expe—
rimental scenario, identical environmental conditions,
sensor configurations, and algorithmic parameters were
maintained for both 2D and 3D LiDAR evaluations as
Table 2. Experiments were repeated multiple times, and
all reported performance metrics correspond to averaged
results over repeated trials.
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Velodyne VLP-32C

Pioneer 3AT Base )
Hokuyo URG-04LX-UGO01

Figure 1. lllustration of our target platform.

Table 2. Comparison of 2D and 3D LiDAR sensors used in
our study.

Parameter 2D LIDAR (Hokuyo (Vzll())dl;lrllii/'I;P-
URG-04LX-UGO1) 320)
Measurement 2D (single scanning 3D (32 vertical
dimension plane) channels)
Weight ~160 g ~925 ¢
Dimensions 50 x 50 x 70 mm 0103 x 72 mm
(ngg?l cost Low (= 1-2k) High (= 6-8K)
Angular resolution 0.36° (}?(')1:;)1;?:1)
Vertical resolution Not available 1.33°
Frame rate Up to 40 Hz Up to 20 Hz
Effective range Up to4m Up to 200 m
Data output 2D range scans 3D point clouds
((lieonrilal;liltanonal Low High

Despite its advantages in simplicity, low cost, and
high frame rate, the 2D LiDAR is inherently limited by
planar sensing, resulting in blind spots for obstacles
located above or below the scanning plane. This limi—
tation directly contributes to navigation failures obser—
ved in Experiment E-3. In contrast, the 3D LiDAR
provides rich spatial information that improves obstacle
detection and mapping robustness; however, this comes
at the expense of increased sensor weight, higher cost,
greater power consumption, and higher computational
requirements. These trade-offs are critical conside—
rations when selecting LiDAR sensors for autonomous
robotic systems.

In our initial mapping experiment, we would capture
several important performance metrics, including
LiDAR error and the speed of data processing in terms
of frames per second. To measure LiDAR error, some
scans of an object of known size using LiDAR sensors
would be recorded and computed those metrics for ins—
tance error, standard deviation, and variance. Besides,
we compare the results of both 2D and 3D LiDAR
systems. Data processing speed would be measured
under mapping scan when our robot moves in work—
space, and updating real-time protocol and correction in
dynamic environments.

In the second experiment, we would focus on human
detection. Subsequently, the bounding box of detected
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human would be saved to estimate the data processing
speed of the computational algorithm for both LiDAR
types in the same environment. In addition, we would
evaluate the accurate detection by recording the error rate
of all detections in relation to the actual number of people
within the field of view of LiDAR. Each experimental
configuration was repeated at least N = 30 times to
account for sensor noise and environmental variability.
The robot remained stationary during accuracy and
human detection experiments to eliminate motion-
induced uncertainty. Statistical metrics including mean
error, standard deviation, and variance were computed
across repeated trials to assess measurement repeatability.

Thirdly, in the path optimization experiment, we are
going to have a test case with the robot traveling in a
structured environment, and using the 2D and 3D
LiDAR sensors in turn. The key consideration para—
meters for this experiment are the number of reori—
entations or stops made by our robot during navigation,
distance covered, time taken to complete the task, and
crosschecking for collision errors along the path of
robot. These parameters would help to identify how
effectively each configuration of LiDAR supports this
robot to optimize its path and complete the task of
navigation under different conditions.

4.2 Experiment 1 (E-1)

Experimental results demonstrate that the 3D LiDAR
achieves lower absolute measurement errors (5.5 cm and
5.2 cmalong the X and Y axes, respectively) compared to
the 2D LiDAR (7.9 cm and 12.8 cm). Moreover, the
variance in 3D LiDAR measurements is reduced by up to
20.4% along the Y-axis, indicating superior measurement
stability. It could be attributed to the design and sensing
nature of both sensors. The 3D LiDAR employs several
layers of scanning and complex laser arrays to generate
denser point cloud data for a more precise description of
the surroundings. Reversely, the 2D LiDAR scans one
plane and cannot capture fine details.

To quantitatively evaluate the sensing performance of
the 2D and 3D LiDAR sensors, statistical error metrics
including mean absolute error, standard deviation, and
variance are computed. Ground-truth distances are
obtained using manual tape measurements of calibration
objects with known dimensions placed at fixed locations
in the laboratory environment. All LIDAR measurements
are recorded while the robot remains stationary to
eliminate motion-induced uncertainty.

For each LiDAR sensor, a set of N repeated distance
measurements is collected for calibration objects with
known positions. The measurement error along each
axis is defined as the absolute difference between the
LiDAR-measured distance and the corresponding
ground-truth value. For the 2D LiDAR, errors are
evaluated along the X and Y axes in the horizontal
plane, whereas for the 3D LiDAR, errors are evaluated
along the X, Y, and Z axes. Let d; denote the LiDAR-
measured distance in a given axis and d,, the corres—
ponding ground-truth distance. The measurement error
e; is computed as:

& =|d; —dy| 3)
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The standard deviation reflects the dispersion of Table 3. List of error, standard deviation and variance of
repeated measurements around their mean value and is competitive lidars in each axis.

computed as Comparison factor
Lidar Axis Error Standard Variance
deviation
(4)
X 5.5 1.1 1.3
~ 3D Y 52 2.8 7.8
where d is the mean measured distance. The variance is Z 11.3 2.9 8.6
defined as the square of the standard deviation. These 2D X 7.9 1.1 12
metrics quantify the stability and repeatability of the Y 12.8 3] 9.8
LiDAR measurements rather than absolute accuracy.
20,05 —e— LiDAR 2D FPS
-m= LiDAR 3D FPS
20.00
19.95}
n
o
[N,
19.90 |
19.85}
19.80

Sample Index

Figure 2. Experimental validation of comparative speed between 2D and 3D LiDAR sensor in case E-1.

Figure 3. Experimental validation of human detection using two competitive LIDAR sensors in case E-2, (a) 3D data of target
object, (b) human closed to an object, (c) human obscured by an object, and (d) 3D data of a group of humans. (The blue box
represents for the data of 3D LiDAR sensor while the blue small sphere indicates for the data of 2D LiDAR sensor).
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It should be noted that the accuracy metrics reported
in Table 3 correspond to system-level spatial accuracy
under identical sensing range and field-of-view
constraints. Although 2D LiDAR sensors are often
considered highly precise in planar measurements, the
lack of vertical information introduces ambiguity when
estimating object position in three-dimensional space. In
contrast, the 3D LiDAR benefits from denser point
clouds and multi-layer scanning, which leads to lower
positional error in the present experimental setup.
Specifically, the 3D LiDAR yields a standard deviation
of 1.1 in the X-axis and 2.8 in the Y-axis compared to
the respective values of 1.1 and 3.1 for the 2D LiDAR.
Variance values also indicate this discrepancy, in which
3D LiDAR variances are 1.3 and 7.8 and 2D LiDAR
variances are 1.2 and 9.8. Low and stable standard
deviation and variance indicate the 3D LiDAR
constantly is providing more steady and consistent
information, =~ which  reduces  uncertainty  in
environmental perception. This stability is particularly
important in the case where high accuracy of
measurement is required for real-time navigation
choices, e.g., when moving through tight angles or
avoiding small hindrances.

The second key advantage of the 3D LiDAR, as is
evident from this test, is that it scans dimensions in the
Z-axis, enabling the reception of data on the height of
the environment. This enables robots to identify
obstacles at varying levels, such as suspended objects,
staircases, or terrain—obstacles that the 2D LiDAR
cannot identify due to its limitation of planar scanning.
Thanks to this 3D mapping capability, the 3D LiDAR
robot can move around complex spaces such as multi-
story  warchouses, closely bunched industrial
complexes, or outdoor environments with huge
elevation variations. On the other hand, the 2D LiDAR
is functional only in flat areas where objects rest on the
ground and never form low-height holes or tunnels that
are still higher than the height of the LiDAR. This does
make it more appropriate for simpler uses such as
indoor navigation or warehouse management on a two-
dimensional plane.

To compare, the frame rate (FPS) capability of these
sensors also supplements the strengths of 2D Lidar. Fig.
3 illustrates the frame-rate variation of the 2D and 3D
LiDAR sensors across repeated trials in Experiment E-
1. The average frame rates are 20.05 Hz for the 2D
LiDAR and 19.80 Hz for the 3D LiDAR, indicating that
the difference in frame rate under the imposed
experimental constraints is minimal. Therefore, Figure 3
is not intended to demonstrate superiority of one sensor
over the other in terms of update rate, but rather to
confirm the temporal stability and repeatability of data
acquisition across repeated experiments.

4.3 Experiment 2 (E-2)

In LiDAR sensor human detection as Fig. 3, 2D
performance and accuracy compared to 3D LiDAR have
broad differences. Although both possess their indivi—
dual strengths, 3D LiDAR is found to be better in terms
of minimizing errors in human detection since it owns
the capability to acquire three-dimensional spatial infor—
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mation. Detection errors in 3D LiDAR are significantly
lesser than in 2D LiDAR, essentially because the former
can separate objects at varying heights and locations and
reduce misclassification in complicated environments.

As can be seen in Table 4, all these 2D LiDAR
errors occur in most of the cases, for example, partial
occlusion of a person by an object, confusion with
objects that have a human leg-like shape, and when a
person and an object are close to each other. These
errors mainly arise due to the few data points and
scanning angles that restrict the dataset. Furthermore,
the numbers in this table show overall disparities in 2D
and 3D Lidar detection performance in varying con—
ditions. When the object is near the sample as Fig. 3a,
detection rate of 2D Lidar (52.6%) is far greater than the
results of 3D Lidar (10.5%). This means that 2D Lidar
performs better in easier cases. Under more congested
conditions, both types of Lidar behave similarly, 3D
Lidar with 15.6% and 2D Lidar with 14.2%. From these
results, under congested conditions, the enhanced spatial
perception benefit of 3D Lidar is not a major benefit
compared to 2D Lidar.

But in complex scenes, particularly when people are
close to objects or obstructed by objects, there is
obvious superiority displayed by 3D Lidar. For instance,
where people are close to objects as Fig. 3b, In complex
scenarios involving partial occlusion, the 3D LiDAR
achieves a human detection rate of 82.7%, significantly
outperforming the 2D LiDAR (53.9%). Conversely, in
simple, unobstructed cases, the 2D LiDAR exhibits
higher detection responsiveness due to its higher frame
rate. Where people are obstructed by objects as Fig. 3c,
3D Lidar is able to detect 22.3% whereas 2D Lidar can
only detect 68.4%. This refers to the higher ability of
3D Lidar to scan more cluttered and dynamic areas, and
hence making it extremely useful in actual applications
where obstructions are of variable height or not
accessible, showing the function it performs in more
complex and random situations.

Table 4. List of percentage of detection error of human in
each situation.

LiDAR Situation
Object Crowded People People
similar to close obscured
the to object | by object
sample
3D 10.5% 15.6% 82.7% 22.3%
2D 52.6% 14.2% 53.9% 68.4%

For 3D LiDAR, human detection accuracy is signi—
ficantly higher, and such excellent performance in most
scenarios except the case when a human and an object
are very close to each other as Fig. 3d. Overlapped
points in the point cloud under such conditions make the
differentiation and accurate identification of humans
difficult. Such a weakness highlights the importance of
point cloud segmentation algorithms for enhancing
detection performance for dense scenes.

Alternatively, Fig. 4 show a wide speed difference
of detection between the systems. 2D LiDAR has dou—
ble the frame rate of 3D LiDAR, i.e., at 18 FPS, at 36
FPS. The higher frame rate means that 2D LiDAR will
respond quickly to changes in the environment, with
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rapid updates permissible for use in real-time applica—
tions. But speed comes at the cost of accuracy as 2D
LiDAR does not capture vertical data to easily detect
humans from other objects. Therefore, in complex
scenes containing multiple overlapping objects or
objects at various heights, 2D LiDAR is more prone to
missed detection and false positives.

Results also highlight the difference in performance
between 2D and 3D Lidar in autonomous robot
navigation. That is, the robot covered a longer distance
and took more time to reach the destination when 2D

Lidar was used as compared to when it used 3D Lidar.
This is because of the limited perception ability of 2D
Lidar to scan only one plane in a horizontal direction.
As a result, the robot could not detect some obstacles
with a scanning distance longer than the scanning range.
Precisely, in the experiment, the robot collided with a
table. This is because 2D Lidar was mounted close to
the floor, thus having the scanning plane too low to
detect the table, which, though lower than shelves of
robot, was above the detection range of the Lidar.
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Figure 4. Experimental validation of comparative speed between 2D and 3D LiDAR sensor in case E-2.
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Figure 5. Experimental validation of autonomous navigation in Experiment E-3: (a) three-dimensional LiDAR perception of the
environment, (b) collision-free navigation path enabled by 3D LiDAR sensing.

4.4 Experiment 3 (E-3)

To enable a direct comparison between 2D and 3D
LiDAR-based navigation, several path-related features
were analyzed, including total path length, number of
reorientations, collision occurrence, and path smooth—
ness. Under identical start—goal configurations, the
robot equipped with 3D LiDAR consistently gene-rated
smoother trajectories with fewer abrupt heading chan—
ges, whereas the 2D LiDAR-based navigation exhibited
additional reorientations caused by incomplete obstacle
perception. In the tested scenario, the 3D LiDAR-based
navigation achieved a shorter effective path length and
zero collision events, owing to its ability to perceive
obstacle height and spatial continuity. In contrast, the
2D LiDAR-based navigation relied solely on planar
sensing, resulting in incomplete obstacle representation
and occasional path interruption. In Fig. 5, only the pla—
nar navigation outcome was shown to maintain visual
consistency with the 2D LiDAR representation. How—
ever, this did not sufficiently reflect the three-dimen—
sional perception advantage of the 3D LiDAR. To
evaluate navigation reliability, each path-planning ex—
periment was executed repeatedly under identical initial
and goal configurations. Performance indicators such as
travel distance, completion time, number of reorien—
tations, and collision events were recorded for each run.
A navigation outcome was considered reliable if
consistent behavior and collision-free operation were
observed across repeated trials.

Nevertheless, under conditions of lower complexity
and obstructions as well that are stationary to the sur—
face as well, the performance difference between 2D
and 3D Lidar is less apparent. As indicated by Fig. 6b,
for the table of this figure, even Lidar 2D and 3D also
mark it as an impassable area to be shunned. The robot
equipped with 3D LiDAR completed navigation tasks
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with fewer reorientations, shorter travel distances, and
zero collision events, whereas the 2D LiDAR configu—
ration experienced collision due to blind spots caused by
planar scanning. The distance covered and travel time to
the target location for both Lidar sensors is virtually
similar, given that the robot will mostly be moving in
the ground plane and has very little vertical components
to deal with. For such cases, the additional vertical
range of 3D Lidar is not as advantageous because the
terrain itself is not as demanding of three-dimensional
mapping. This is to say that while 3D Lidar works
incredibly well in dense obstacle and terrain scenarios,
the application of 3D scanning lowers in less dense,
flatter terrain where 2D Lidar also works well.

5. DISCUSSIONS AND POTENTIAL PROSPECT

The experiment findings indicate the superiority of 3D
Lidar over 2D Lidar in guiding an autonomous robot
through sophisticated and changing environments. The
experiment validates the manner in which 3D Lidar
provides more accurate measurement but also provides
more competent obstacle detection ability by leveraging
the vertical dimensionality. This advantage enables 3D
Lidar-enabled robots to plot more optimal routes and to
recognize obstacles, shortening travel distances and
travel times compared to 2D Lidar-enabled robots.

In addition to the use of 3D LiDAR sensors, an
alternative approach to overcoming the planar sensing
limitation of 2D LiDAR involves the deployment of
multiple 2D LiDAR units arranged in parallel or
perpendicular scanning planes. Such configurations can
enrich spatial perception by capturing complementary
height or angular information, thereby enabling partial
three-dimensional reconstruction of the environment
while retaining the advantages of low cost, low power
consumption, and high frame rate associated with 2D
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LiDAR sensors. Nevertheless, multi-2D-LiDAR confi—
gurations also introduce additional challenges, including
sensor calibration, synchronization, data fusion comp—
lexity, and increased mechanical integration effort.
Furthermore, the resulting spatial representation remains
sparse compared to dense point clouds provided by a
single 3D LiDAR sensor, particularly in environments
with complex geometry or dynamic obstacles.

While 2D Lidar has a higher frame rate and hence
offers quicker detection updates, this is balanced against
its lower precision measurement and inability to mea—
sure vertically differences. Nevertheless, 3D Lidar, tho—
ugh at a lower frame rate, offers higher and more accu—
rate data and is therefore better suited for navigation in
highly complex obstacle geometry environments. Being
at a lower frame rate is generally not a minus, as the
additional information from sensing vertically is well
worth a slight delay in updates, provided that this
improves safety and path planning capability.

Though 3D Lidar is of immense value in spatial
perception, 2D Lidar remains the optimal choice for an
application that requires a low-profile solution and
height-limited robots. In a majority of cases, robots
inhabit a two-dimensional world and where objects'
heights are not such a critical issue. Hence, the appli—
cation of 2D Lidar conserves energy, saves capital, and
simplifies data processing. Typical applications for 2D
Lidar are delivery robots for indoor use, cleaning robots
for indoor use, warehouse vehicles that are autonomous,
and factory production lines, where the environment is
relatively stationary and does not require vertical object
detection. Such an environment usually exploits the low
cost, fast speed, and simplicity of 2D Lidar, especially if
the activity is constrained to a specific horizontal plane.

Where there is a need for high-end environmental
perception, 3D Lidar is a must. Every outdoor autono—
mous robot, search and rescue robot, unmanned aerial
vehicle (UAV), and mobile robot in unstructured envi—
ronments employ 3D Lidar for complete terrain and
object detection. 3D Lidar's multi-layer scanning enab—
les robots to detect obstacles of different heights, enab—
les detailed map construction, and enables safe naviga—
tion in difficult environments. Its ability to perceive and
report three-dimensional environments best fits it to be
used in scenarios where the robots must move over
different terrains, i.e., woods, towns, or stretches of hills.

Furthermore, advances in even more sophisticated
algorithms and machine learning policies that have the
ability to process and analyze the vast amount of data
generated by 3D Lidar have also further increased its
application in real-world scenarios. As the technologies
develop further, the application of 3D Lidar in
autonomous systems will be even more indispensable in
enabling even greater degrees of autonomy, safety, and
efficiency. These advancements also enable 3D Lidar to
be mounted on more compact, cost-efficiently engi—
neered robots, rendering its advantages available to an
even wider range of industries and applications.

Briefly, although both the 2D and 3D Lidar
technologies find their applications within autonomous
navigation, the greater vision and penetration capability
of 3D Lidar through complex, dynamic environments
place it as an indispensable tool for more advanced
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robotic implementations. For these reasons, the present
study focuses on a direct comparison between a single 2D
LiDAR and a single 3D LiDAR to clearly highlight the
fundamental trade-offs between planar and volu—metric
sensing. A systematic investigation of multi-2D-LiDAR
configurations and their performance relative to 3D Li—
DAR constitutes an important direction for future work.

6. CONCLUSION

This study presented a systematic experimental compa—
rison between 2D and 3D LiDAR sensing for autono—
mous navigation using a unified robotic platform and
identical operating conditions. Unlike many existing
studies that focus on algorithmic improvements or
single-task evaluations, the present work provides a
multi-task, system-level assessment supported by repe—
ated real-world experiments. Quantitative results from
Experiment E-1 demonstrate that the tested 3D LiDAR
achieves lower positional error and reduced measu—
rement variability compared to the tested 2D LiDAR,
highlighting the benefit of multi-layer sensing for spa—
tial accuracy. Experiment E-2 further shows that while
both sensors perform comparably in simple detection
scenarios, the human detection rate of the 3D LiDAR is
significantly higher in occluded and cluttered environ—
ments, directly linking three-dimensional perception to
detection robustness. Experiment E-3 confirms that
these sensing differences propagate to navigation per—
formance, where 3D LiDAR perception enables smoot—
her trajectories and collision-free operation in environ—
ments containing height-varying obstacles.

Importantly, the results also reveal that the advantages
of 3D LiDAR are not universal: the 2D LiDAR remains
highly competitive in planar, structured environments,
offering benefits in terms of simplicity, cost, and
computational efficiency. These findings un—derscore
that sensor selection should be driven by application
context rather than generic assumptions about sensing
accuracy. The novelty of this work lies in its controlled
experimental framework and its quantitative, task-
spanning comparison of 2D and 3D LiDAR sensing,
rather than in the proposal of new algorithms. By
isolating the impact of sensing dimen—sionality under fair
conditions, this study provides prac—tical, evidence-based
guidance that complements and extends existing literature
on LiDAR-based autonomous navigation.
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KOMITAPATUBHA CTYAWJA 2]1 U 3]1 IUJAP
TEXHOJIOTHJA Y UHAYCTPUJCKUM
INPUMEHAMA AYTOHOMHE HABUT'AIINJE

X.K.T. Hro, T.®. Hryjen

Y obmactu poOoTHKe, YETHpU 3amaTka ayTOHOMHHX
poboTa, ka0 mITO Cy HaBUTAIHMja, JOKaJIM3amdja, Ipa—
heme objekara U IJIAaHUpamE KPEeTama, UrPajy KIbYIHY
yIOTYy y OCHIypaBamy ayTOHOMHje M HHTEIMI€HLHje
CHCTEMa y CIIOKEHOM U Pa3HOBPCHOM OKpykemy. CBe
BEroBO0  (YHKIHMOHHCAEke OCllama Ce Ha pajgHy
criocoOHOCT Jacepckor ckeHepa win JIuJIAP (merex—
nMja u ojpehuBame ynabEHOCTH CBETIOCTH) CEH30pa,
Koju mnocraje obOchaBajyhu amat 3a oBe 3amarke 300r
MIPELU3HOT Mepema YIaJbeHOCTH M IIHUPOKOT BHIHOT
noseba. [nie oBor pajga je nma ce mMpoleHe W yHopene
panue neppopmance mmehy 21 u 31 JIuIAP censzopa
y cnenuduuHuM 3amanuMa. Y pasifuyiTHM OpHMEHaMa,
2J1 JIuJIAP ceHzop ckeHupa y jemHOj paBHH, JOK 3]]
KOPHCTH Jlacepe 3a CHUMame Ipenn3Hux 3/ momaraka
objekata W oOkpyxema. Cepuja exkcrepuMeHaTa Hu3
CTBApHOI CBETa CIpPOBEJCHA je y J1iabopaTopHjcKOM
OKpyXemy, (okycupajyhu ce Ha Tpu IJaBHA 3ajaTKa:
nereknujy u npaheme o0jekara, MOryiHOCTH Mamupama
U IUIaHUpakhe KpeTama. 3axBasbyjylin OBUM ITpaKkTHU—
HUM TECTOBHMMA, PE3yJTaTH MCTHYY NMPEAHOCTH M Cla—
6octu u 2/1 m 3/1 JIu[IAP ceH3opa y TakBUM 3aJaruMa.
ExcrniepumenTaniu pesynratu nokasyjy n1a, y nopehemy
ca 21 JluJIAP-om, 31 JIuJIAP cmamyje rpemky me—
pema 10 59% Ha Y-och, mOOOJBIIaBa TAYHOCT JBYIICKE
nerekiuje 3a 28,8% y ycioBHMa OKIy3Hje W EIUMH—
HUIIE HaBUTallMOHE KOJNW3HWje H3a3BaHe IUIAHAPHUM
CIIENTUM Ta4yKaMa, HaKo I10 IIeHy HIDKe Op3uHe KalpoBa.
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