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In the field of robotics, four tasks of autonomous robots such as 
navigation, localization, object tracking, and motion planning, play a 
crucial role to ensure the autonomy and intelligence of system in the 
complex and diverse environment. All of its operation relies on the working 
ability of laser scanner or LiDAR (Light Detection and Ranging) sensor 
which becomes a promising tool for these tasks due to the accurate 
distance measurement and wide field of view. The objective of this paper is 
to evaluate and compare the working performance between 2D and 3D 
LiDAR sensor in the specific tasks. In the different applications, 2D LiDAR 
sensor scans on a single plane while the 3D one uses lasers to capture 
precise 3D data of objects and environments. A series of real-world 
experiments are conducted in a laboratory setting, focusing on three main 
tasks: object detection and tracking, mapping capabilities, and motion 
planning. Owing to these practical tests, the results highlight the strengths 
and weaknesses of both 2D and 3D LiDAR sensors in such tasks. 
Experimental results show that, compared with 2D LiDAR, the 3D LiDAR 
reduces measurement error by up to 59% in the Y-axis, improves human 
detection accuracy by 28.8% under occlusion conditions, and eliminates 
navigation collisions caused by planar blind spots, albeit at the cost of a 
lower frame rate.  
 
Keywords: Autonomous robot, precise navigation, Simultaneous Locali–
zation and Mapping, 2D LiDAR, 3D LiDAR. 

 
 

1. INTRODUCTION  
 

Autonomous mobile robots have become an essential 
component of modern industrial and service 
applications [1-3], including warehouse logistics, 
manufacturing automation, inspection, and human–
robot collaborative environments. To operate safely and 
efficiently, such robots must be capable of perceiving 
their surroundings [4], estimating their own position [5], 
identifying obstacles and humans [6], and planning 
collision-free paths in real time. Among the available 
perception technologies, LiDAR sensors are widely 
adopted due to their robustness to lighting conditions, 
accurate distance measurement, and wide field of view.  

In robotic navigation systems, LiDAR sensing un–
derpins several fundamental capabilities, most notably 
environment mapping, human and obstacle detection, 
and path planning or optimization. The performance of 
these tasks is directly influenced by the characteristics 
of the sensing modality employed. In practice, LiDAR 
sensors are commonly categorized into 2D LiDAR and 
3D LiDAR, which differ significantly in sensing 
dimensionality, data density, computational require–
ments, and cost. Selecting an appropriate LiDAR 

configuration is therefore a critical design decision in 
autonomous robotic systems [7-9]. 

A 2D LiDAR typically performs planar scanning at 
a fixed height, providing range measurements in a 
single horizontal plane. Owing to its high update rate, 
low computational load, compact size, and relatively 
low cost, 2D LiDAR has been extensively deployed in 
indoor navigation, warehouse automation, and struc–
tured industrial environments [10]. However, the inhe–
rent limitation of planar sensing introduces blind spots 
for objects located above or below the scanning plane, 
which may degrade performance in environments with 
height-varying obstacles or complex geometry. 

In contrast, a 3D LiDAR employs multi-layer laser 
scanning to acquire three-dimensional point cloud data, 
enabling comprehensive spatial perception of the envi–
ronment. This capability allows robots to detect obs–
tacles of varying height, navigate through cluttered or 
unstructured environments, and operate reliably in 
scenarios where vertical information is essential [11]. 
These advantages come at the expense of higher cost, 
increased sensor weight, greater computational demand, 
and typically lower frame rates compared to 2D LiDAR 
systems. 

Although the advantages and limitations of 2D and 
3D LiDAR technologies are widely recognized in 
general terms, many existing studies investigate these 
sensors under different platforms, algorithms, or appli–
cation contexts, making it difficult to draw fair and 
practical comparisons [12-14]. In particular, some 
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results of investigations are often inferred from task-
specific studies or simulation-based evaluations, rather 
than from controlled experimental comparisons conduc–
ted on the same robotic platform under identical opera–
ting conditions. Moreover, while prior research has 
addressed mapping accuracy, human detection, or navi–
gation performance individually, a unified experimental 
evaluation covering all three tasks using both 2D and 
3D LiDAR remains limited. This gap makes it chal–
lenging for engineers and practitioners to objectively 
assess the trade-offs between sensing dimensionality, 
accuracy, robustness, and computational efficiency 
when designing real-world robotic systems.     

Motivated by these limitations, this study aims to 
provide a systematic and experimentally grounded com–
parison of 2D and 3D LiDAR sensors for autonomous 
navigation applications. Rather than proposing new 
perception or navigation algorithms, the focus of this 
work is on system-level evaluation, where both sensing 
modalities are assessed under identical experimental 
conditions on the same mobile robot platform. Speci–
fically, the performance of 2D and 3D LiDAR sensing 
is evaluated with respect to three representative tasks: 

1. Mapping accuracy, including measurement er–
ror, standard deviation, and variance; 

2. Human detection performance, particularly un–
der occlusion and cluttered conditions; 

3. Path optimization and navigation behavior, inc–
luding collision avoidance and trajectory 
robustness. 

By conducting repeated real-world experiments in a 
controlled laboratory environment, this work seeks to 
clarify when the additional complexity of 3D LiDAR is 
justified and when 2D LiDAR remains a sufficient and 
efficient solution. 

The main contributions of this paper are summarized 
such as (i) Unified experimental framework: A single 
wheeled mobile robot platform integrating both a 2D 
LiDAR and a 3D LiDAR sensor is developed, enabling 
fair and direct comparison under identical sensing range, 
field-of-view, and environmental conditions, (ii) Multi-
task comparative evaluation: The study experi–mentally 
contrasts 2D and 3D LiDAR performance across map–
ping, human detection, and path optimization tasks using 
consistent metrics and repeated trials, (iii) Quantitative 
system-level insights: Measurement accuracy, detection 
reliability, frame-rate behavior, and navigation robustness 
are analyzed to reveal practical trade-offs between planar 
and volumetric sensing, (iv) Application-oriented gui–
dance: The results provide evidence-based recommen–
dations for LiDAR sensor selection in industrial 
autonomous navigation applications. 

The remainder of this paper is organized as follows. 
Section 2 reviews related work on 2D and 3D LiDAR-
based mapping, human detection, and path optimization, 
highlighting existing limitations and open challenges. 
Section 3 introduces the technical preliminaries and 
methodological foundations relevant to the studied 
tasks. Section 4 presents the experimental setup and de–
tailed validation results for both LiDAR configurations. 
Finally, Section 5 discusses the findings, potential 
prospects, and future research directions, followed by 
the conclusions. 

2. PREVIOUS WORKS  
 

2.1 LiDAR-Based Mapping and Localization 
 

LiDAR sensors have been extensively used for robot 
mapping and localization due to their ability to provide 
accurate range measurements independent of ambient 
lighting conditions. Early and widely adopted appro–
aches rely on 2D LiDAR-based simultaneous localiza–
tion and mapping (SLAM), where planar laser scans are 
used to estimate robot pose and construct occupancy grid 
maps [15,16]. These methods have demonstrated reliable 
performance in structured indoor environments such as 
corridors, factories, and warehouses, benefiting from high 
scan rates and relatively low computational cost.  

However, several studies [17-19] have reported that 
2D LiDAR-based mapping suffers from limitations 
when deployed in environments containing height-vary–
ing obstacles, uneven terrain, or overhanging structures. 
Because only a single horizontal scanning plane is 
observed, important spatial information may be omitted, 
leading to localization drift or incomplete maps. 

To address these limitations, 3D LiDAR-based map–
ping approaches [23-25] have been proposed, levera–
ging multi-layer scanning and dense point clouds to 
generate three-dimensional maps. Such methods have 
shown improved robustness in complex environments, 
including outdoor scenes, cluttered indoor spaces, and 
semi-structured industrial settings. Prior studies report 
that the inclusion of vertical information can signifi–
cantly improve map consistency and localization accu–
racy, particularly in scenarios where planar assumptions 
are violated. 

Despite these advantages, 3D LiDAR-based map–
ping typically incurs higher computational complexity, 
increased data-processing requirements, and greater sys–
tem cost [26]. As a result, many works focus on 
optimizing point cloud processing pipelines or selec–
tively reducing data density, highlighting an inherent 
trade-off between mapping fidelity and system efficiency. 

 
2.2 Human Detection and Obstacle Perception 

Using LiDAR 
 

Human detection is a critical capability for mobile 
robots operating in shared environments, particularly in 
industrial and service applications where safety is 
paramount. LiDAR-based human detection methods co–
mmonly rely on geometric clustering, feature extraction, 
and learning-based classification applied to range mea–
surements.  

For 2D LiDAR, human detection approaches [20-22] 
often exploit leg patterns, shape descriptors, or temporal 
motion cues extracted from planar scans. These methods 
are computationally efficient and have demonstrated 
good performance in controlled indoor environments. 
However, their effectiveness decreases in crowded 
scenes, under occlusion, or when humans adopt non-
standard postures, due to the lack of height information. 

In contrast, 3D LiDAR-based human detection met–
hods [27-30] benefit from volumetric perception, allo–
wing the extraction of height, body shape, and spatial 
continuity features. Prior research shows that 3D point 
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cloud representations can improve detection robustness 
in complex and dynamic environments, especially 
where partial occlusions occur. Nevertheless, these app–
roaches often require more sophisticated data processing 
and higher computational resources.  

Existing studies typically evaluate human detection 
performance either using 2D or 3D LiDAR 

independently, often under different experimental setups 
or application assumptions. As a result, direct and fair 
comparisons between planar and volumetric LiDAR 
sensing for human detection remain relatively limited 
[31, 32]. 

Table 1. List of the cutting-edge techniques in related fields. 

Type of 
laser 

scanner 

Publication 
year 

Author(s) Fusing device(s) Classification Outcome(s) Challenge(s) 

2D
 L

iD
A

R
 

2021 Liu, R. et al 
[18] 

Hokuyo URG-04LX, 
Decawave DWM1001, 

wheel encoder 

Mapping This approach that 
was proposed has as 

high as 85.5% 
reduction in mapping 
error, and reaches up 
to 0.199�m average 

error using four 
UWB nodes for 
indoor area of 

400�m² 

Growing the 
number of UWB 
nodes improves 
map quality, but 
also improves 
computational 

cost, and does not 
work well with 

large open or low-
feature areas 

unless used in 
conjunction with 

UWB 
2021 Ranđelović, D. 

M. et al [19] 
Garmin LIDAR-Lite 

v3HP, HC-SR04 
Ultrasonic, Sharp 
GP2Y0A710K0F 

Infrared rangefinder, 
Bosch BME280 

Barometric 

Mapping By combining 
readings from 

several inexpensive 
sensors, the system 
would better handle 

environmental 
change (e.g., 
temperature/ 

humidity 
fluctuations) than if 
it had any individual 

sensor alone 

Significant 
calibration and 

filtering is needed 
to normalize 
barometric 

readings and map 
response times to 

true altitude 
changes 

2023 Yao, Q. Y. et al 
[20] 

2D LiDAR, DBSCAN Human 
detection 

The system identifies 
aberrant trajectories 
associated with a fall 
and gives real-time 

alerts 

Some falling 
maneuvers were 

classified as 
walking path 
anomalies, 

especially when 
people walked out 

of view of the 
LiDAR 

2020 Ngo, H. Q. T. 
et al [21] 

Hokuyo URG-04LX, 
positioning sensor, 

Realsense d435 

Path 
optimization 

Researchers 
developed the fused 

method from 
multiple sensors to 

navigate the shortest 
path in front of 

patients 

Its ability of 
autonomy and the 
accurate tracking 
error of human-

aware navigation 
was not mentioned 

2022 Nuha, H. et al 
[22] 

3D LiDAR Path 
optimization 

The RELM model 
uses observations 
only for 10–40 m 

heights to 
extrapolate wind 

speed 

Performance of 
RELM is 

dependent on 
careful tuning of 
the regularization 
parameter (D) and 
number of hidden 

neurons (M) 

3D
 L

iD
A

R
 

2021 Koide, K. et al 
[23] 

3D LiDAR sensor, 
GPU-accelerated CPU 

Mapping This technique 
ensured consistency 

across the whole 
map, even in huge 
environments with 

loop closures 

The voxel 
matching cost term 

is prone to local 
minima, and 

solutions obtained 
may be resolution 
and environment 

density dependent 
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2023 Yin, H. et al 
[24] 

A Velodyne VLP-16 
3D LiDAR, BIM-

based semantic map 

Mapping It reduces setup and 
computation costs in 
static environments 
with a maximum of 

34% decrease in 
translation error 

There are some 
map points 

mislabeled or 
ambiguously 

labeled and this 
work cannot 

handle global re-
localization from 

scratch 
2024 Shao, W. et al 

[25] 
3D+RGB IP67 Kit Human 

detection 
Merging the work 
provides better F1 
score (17.1%) and 

accuracy up to 0.807 

Manual subject 
segmentation and 

annotation are 
limited to only 
four-participant 

datasets 
2023 Wang, J. et al 

[26] 
Velodyne HDL-64E, 

VLP-16 
Path 

optimization 
Localization is 

performed frame-to-
keyframe only, 

without any loop 
closure usage, which 
in some scenes may 

not always be 
feasible in real-world 

scenarios 

The method 
assumes good 

initial 
correspondence 

between keyframes 
and LiDAR 
frames. Poor 

initialization may 
still lead to 
divergence 

 
2.3 LiDAR-Based Path Planning and Navigation  

 
Path planning and navigation constitute another major 
application area of LiDAR sensing. In many robotic 
systems [33, 34], LiDAR-derived maps and obstacle 
representations serve as inputs to local and global plan–
ners responsible for collision avoidance and trajectory 
generation. 

2D LiDAR-based navigation has been widely adop–
ted in indoor robotics due to its simplicity and 
efficiency. Numerous studies [35-37] demonstrate that 
planar sensing is sufficient for navigation in environ–
ments where obstacles are predominantly vertical and 
well-represented at the scanning height. However, 
failures may occur when obstacles are missed due to 
height variation, leading to unsafe navigation behavior. 

3D LiDAR-based navigation, on the other hand, 
enables robots to reason about the environment in three 
dimensions, improving obstacle avoidance and path 
robustness. Prior works [38, 39] report smoother tra–
jectories and enhanced safety in cluttered environments. 
Nonetheless, these benefits must be weighed against 
increased computational burden and system complexity.  

As summarized in Table 1, recent studies employing 
2D LiDAR primarily focus on indoor mapping, human 
detection, and short-range path optimization, benefiting 
from high frame rates and low computational cost [40-
42]. However, these approaches frequently report 
limitations related to planar sensing, including reduced 
robustness under occlusion, sensitivity to obstacle 
height, and degraded performance in cluttered or low-
feature environments. In contrast, 3D LiDAR-based 
approaches demonstrate superior mapping consistency 
and improved detection accuracy, with reported reduc–
tions in localization or translation error of up to 34% in 
complex environments [43, 44]. These advantages come 
at the expense of increased computational complexity 
and lower frame rates. 

 

3. METHODOLOGY AND TECHNICAL 
PRELIMINARIES  

 
This part presents the technical foundations and rese–
arch methodology adopted in the present study. Unlike 
Section 2, which reviews related literature, the tech–
niques described here correspond to the algorithms and 
system components actually implemented in the experi–
mental validation unless otherwise stated. 

 
3.1 System Overview 

 
The experimental system is built around a wheeled mo–
bile robot equipped with interchangeable LiDAR sen–
sing configurations. The robot operates within a cont–
rolled indoor environment and executes identical per–
ception and navigation tasks using either a 2D LiDAR 
or a 3D LiDAR sensor. The overall processing pipeline 
consists of four main stages: 

1. LiDAR data acquisition 
2. Environment representation and mapping 
3. Human and obstacle detection 
4. Navigation and path execution 

All system components are implemented within the 
Robot Operating System (ROS) framework to ensure 
modularity, reproducibility, and consistent data 
handling across experiments. 

 
3.2 LiDAR Data Representation 
 
3.2.1 2D LiDAR Data 
 
The 2D LiDAR provides planar range measurements in 
polar coordinates, represented as:  

( ){ } 2
2 1

, N
D i i i

S r rθ π
=

=   (1) 

where ri denotes the measured distance and θi the 
corresponding scan angle. These measurements are 
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transformed into Cartesian coordinates for mapping and 
obstacle detection tasks. 
 
3.2.2 3D LiDAR Data 
 
The 3D LiDAR produces multi-layer range measure–
ments that form a three-dimensional point cloud:   

( ){ }3 1
, , M

D i i i i
P x y z

=
=   (2) 

Compared to 2D scans, 3D point clouds provide 
explicit vertical information, enabling volumetric envi–
ronment representation. To maintain computational ef–
ficiency, point cloud preprocessing includes downsam–
pling and outlier filtering prior to further processing. 

 
3.3 Mapping Methodology 
 
Mapping is performed using a Graph SLAM-based 
framework, which is applied consistently for both sen–
sing configurations to ensure a fair comparison. 
• Nodes represent robot poses over time. 
• Edges encode relative pose constraints derived from 

LiDAR measurements and odometry. 
For the 2D LiDAR configuration, constraints are 

generated from planar scan matching, while for the 3D 
LiDAR configuration, constraints are derived from point 
cloud registration. Importantly, the underlying SLAM 
formulation remains unchanged; only the dimensionality 
of the sensory input differs. The resulting maps are: 
• 2D occupancy grids for the 2D LiDAR case 
• 3D spatial representations for the 3D LiDAR case 

This design isolates the impact of sensing dimen–
sionality on mapping performance. 

 
3.4 Human and Obstacle Detection 
 
3.4.1 Detection Using 2D LiDAR 

 
Human and obstacle detection using 2D LiDAR relies 
on segmentation of planar scan data. Consecutive scan 
points are grouped into clusters based on Euclidean 
distance thresholds. Extracted clusters are then clas–
sified based on geometric features such as width, 
curvature, and temporal consistency. 

 
3.4.2 Detection Using 3D LiDAR 

 
For the 3D LiDAR configuration, detection is perfor–
med on point cloud data using three-dimensional Eucli–
dean clustering. Height information is explicitly 
considered to distinguish humans and obstacles from 
background structures. Temporal filtering is applied to 
improve detection stability across consecutive frames. 

In both configurations, the detection output is rep–
resented in the robot’s local coordinate frame and 
forwarded to the navigation module. 

 
3.5 Navigation and Path Execution 

 
Navigation is implemented using a standard local plan–
ning framework that consumes LiDAR-derived obstacle 
information. The planner generates collision-free velo–

city commands in real time based on the robot’s current 
pose, goal position, and perceived environment. 

The navigation logic remains identical across both 
sensing configurations. Any differences in navigation 
performance therefore stem from differences in envi–
ronmental perception rather than from changes in 
planning algorithms. 

 
3.6 The Proposed Method 

 
To eliminate ambiguity regarding the scope of this 
chapter, the techniques actually employed in this work 
are summarized as follows: 
• Mapping: Graph SLAM with planar scan matching 

for 2D LiDAR and point cloud registration for 3D 
LiDAR. 

• Human detection: Geometric clustering-based 
detection for both sensing modalities, extended 
with height information for 3D LiDAR. 

• Navigation: LiDAR-based local path planning with 
real-time obstacle avoidance. 

The contribution lies in the controlled experimental 
application and comparison of these established 
techniques under identical conditions.  

 
4. EXPERIMENTAL VERIFICATIONS  

 
4.1 Platform Setup 

 
Guided by the performance indicators and limitations 
reported in Table 1, the experimental validation focuses 
on three representative tasks—mapping accuracy, hu–
man detection reliability, and path optimization effi–
ciency—using identical sensing ranges and operating 
conditions for both 2D and 3D LiDAR. To validate the 
working performance of those sensors, a series of 
experiments in the laboratory level are conducted. In 
our tests, the experimental platform as Fig. 1 is based on 
a Pioneer 3-AT wheeled mobile robot, which provides 
sufficient payload capacity, stability, and modularity for 
multi-sensor integration. The robot is equipped with two 
LiDAR sensors: a Hokuyo URG-04LX-UG01 2D 
LiDAR and a Velodyne VLP-32C 3D LiDAR, mounted 
at different heights to reflect typical deployment scena–
rios in indoor robotic navigation. This 2D LiDAR is 
mounted near the base of the robot and provides planar 
range measurements for close-range obstacle detection 
and mapping. The 3D LiDAR is mounted on the top 
plate of the robot and provides multi-layer point cloud 
data for full three-dimensional environmental percep–
tion. Our configuration is especially useful for appli–
cations requiring fine-grained navigation and localiza–
tion in narrow, constrained spaces, i.e., indoor environ–
ments or those with a high density of obstacles. 

All experiments in this study were conducted fol–
lowing a fixed and repeatable protocol to ensure the re–
liability and consistency of the results. For each expe–
rimental scenario, identical environmental conditions, 
sensor configurations, and algorithmic parameters were 
maintained for both 2D and 3D LiDAR evaluations as 
Table 2. Experiments were repeated multiple times, and 
all reported performance metrics correspond to averaged 
results over repeated trials. 
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Figure 1. Illustration of our target platform. 

Table 2. Comparison of 2D and 3D LiDAR sensors used in 
our study.  

Parameter 2D LiDAR (Hokuyo 
URG-04LX-UG01) 

3D LiDAR 
(Velodyne VLP-

32C) 
Measurement 
dimension 

2D (single scanning 
plane) 

3D (32 vertical 
channels) 

Weight ~160 g ~925 g 
Dimensions 50 × 50 × 70 mm Ø103 × 72 mm 
Typical cost 
(USD) Low (≈ 1–2k) High (≈ 6–8k) 

Angular resolution 0.36° 0.1°–0.4° 
(horizontal) 

Vertical resolution Not available 1.33° 
Frame rate Up to 40 Hz Up to 20 Hz 
Effective range Up to 4 m Up to 200 m 
Data output 2D range scans 3D point clouds 
Computational 
demand Low High 

 
Despite its advantages in simplicity, low cost, and 

high frame rate, the 2D LiDAR is inherently limited by 
planar sensing, resulting in blind spots for obstacles 
located above or below the scanning plane. This limi–
tation directly contributes to navigation failures obser–
ved in Experiment E-3. In contrast, the 3D LiDAR 
provides rich spatial information that improves obstacle 
detection and mapping robustness; however, this comes 
at the expense of increased sensor weight, higher cost, 
greater power consumption, and higher computational 
requirements. These trade-offs are critical conside–
rations when selecting LiDAR sensors for autonomous 
robotic systems. 

In our initial mapping experiment, we would capture 
several important performance metrics, including 
LiDAR error and the speed of data processing in terms 
of frames per second. To measure LiDAR error, some 
scans of an object of known size using LiDAR sensors 
would be recorded and computed those metrics for ins–
tance error, standard deviation, and variance. Besides, 
we compare the results of both 2D and 3D LiDAR 
systems. Data processing speed would be measured 
under mapping scan when our robot moves in work–
space, and updating real-time protocol and correction in 
dynamic environments. 

In the second experiment, we would focus on human 
detection. Subsequently, the bounding box of detected 

human would be saved to estimate the data processing 
speed of the computational algorithm for both LiDAR 
types in the same environment. In addition, we would 
evaluate the accurate detection by recording the error rate 
of all detections in relation to the actual number of people 
within the field of view of LiDAR. Each experimental 
configuration was repeated at least N = 30 times to 
account for sensor noise and environmental variability. 
The robot remained stationary during accuracy and 
human detection experiments to eliminate motion-
induced uncertainty. Statistical metrics including mean 
error, standard deviation, and variance were computed 
across repeated trials to assess measurement repeatability. 

Thirdly, in the path optimization experiment, we are 
going to have a test case with the robot traveling in a 
structured environment, and using the 2D and 3D 
LiDAR sensors in turn. The key consideration para–
meters for this experiment are the number of reori–
entations or stops made by our robot during navigation, 
distance covered, time taken to complete the task, and 
crosschecking for collision errors along the path of 
robot. These parameters would help to identify how 
effectively each configuration of LiDAR supports this 
robot to optimize its path and complete the task of 
navigation under different conditions. 

 
4.2 Experiment 1 (E-1) 

 
Experimental results demonstrate that the 3D LiDAR 
achieves lower absolute measurement errors (5.5 cm and 
5.2 cm along the X and Y axes, respectively) compared to 
the 2D LiDAR (7.9 cm and 12.8 cm). Moreover, the 
variance in 3D LiDAR measurements is reduced by up to 
20.4% along the Y-axis, indicating superior measurement 
stability. It could be attributed to the design and sensing 
nature of both sensors. The 3D LiDAR employs several 
layers of scanning and complex laser arrays to generate 
denser point cloud data for a more precise description of 
the surroundings. Reversely, the 2D LiDAR scans one 
plane and cannot capture fine details. 

To quantitatively evaluate the sensing performance of 
the 2D and 3D LiDAR sensors, statistical error metrics 
including mean absolute error, standard deviation, and 
variance are computed. Ground-truth distances are 
obtained using manual tape measurements of calibration 
objects with known dimensions placed at fixed locations 
in the laboratory environment. All LiDAR measurements 
are recorded while the robot remains stationary to 
eliminate motion-induced uncertainty.  

For each LiDAR sensor, a set of N repeated distance 
measurements is collected for calibration objects with 
known positions. The measurement error along each 
axis is defined as the absolute difference between the 
LiDAR-measured distance and the corresponding 
ground-truth value. For the 2D LiDAR, errors are 
evaluated along the X and Y axes in the horizontal 
plane, whereas for the 3D LiDAR, errors are evaluated 
along the X, Y, and Z axes. Let di denote the LiDAR-
measured distance in a given axis and dgt the corres–
ponding ground-truth distance. The measurement error 
ei is computed as: 

i i gte d d= −   (3) 
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The standard deviation reflects the dispersion of 
repeated measurements around their mean value and is 
computed as 

( )2
1

1 N

i
i

d d
N

σ
=

= −∑   (4) 

where  is the mean measured distance. The variance is 
defined as the square of the standard deviation. These 
metrics quantify the stability and repeatability of the 
LiDAR measurements rather than absolute accuracy. 

Table 3. List of error, standard deviation and variance of 
competitive lidars in each axis.  

 
Lidar 

 
Axis 

Comparison factor 
Error Standard 

deviation 
Variance 

 
3D 

X 5.5 1.1 1.3 
Y 5.2 2.8 7.8 
Z 11.3 2.9 8.6 

2D X 7.9 1.1 1.2 
Y 12.8 3.1 9.8 

 
Figure 2. Experimental validation of comparative speed between 2D and 3D LiDAR sensor in case E-1. 

(a) (b) 

(c) (d) 
Figure 3. Experimental validation of human detection using two competitive LiDAR sensors in case E-2, (a) 3D data of target 
object, (b) human closed to an object, (c) human obscured by an object, and (d) 3D data of a group of humans. (The blue box 
represents for the data of 3D LiDAR sensor while the blue small sphere indicates for the data of 2D LiDAR sensor). 
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It should be noted that the accuracy metrics reported 
in Table 3 correspond to system-level spatial accuracy 
under identical sensing range and field-of-view 
constraints. Although 2D LiDAR sensors are often 
considered highly precise in planar measurements, the 
lack of vertical information introduces ambiguity when 
estimating object position in three-dimensional space. In 
contrast, the 3D LiDAR benefits from denser point 
clouds and multi-layer scanning, which leads to lower 
positional error in the present experimental setup. 
Specifically, the 3D LiDAR yields a standard deviation 
of 1.1 in the X-axis and 2.8 in the Y-axis compared to 
the respective values of 1.1 and 3.1 for the 2D LiDAR. 
Variance values also indicate this discrepancy, in which 
3D LiDAR variances are 1.3 and 7.8 and 2D LiDAR 
variances are 1.2 and 9.8. Low and stable standard 
deviation and variance indicate the 3D LiDAR 
constantly is providing more steady and consistent 
information, which reduces uncertainty in 
environmental perception. This stability is particularly 
important in the case where high accuracy of 
measurement is required for real-time navigation 
choices, e.g., when moving through tight angles or 
avoiding small hindrances. 

The second key advantage of the 3D LiDAR, as is 
evident from this test, is that it scans dimensions in the 
Z-axis, enabling the reception of data on the height of 
the environment. This enables robots to identify 
obstacles at varying levels, such as suspended objects, 
staircases, or terrain—obstacles that the 2D LiDAR 
cannot identify due to its limitation of planar scanning. 
Thanks to this 3D mapping capability, the 3D LiDAR 
robot can move around complex spaces such as multi-
story warehouses, closely bunched industrial 
complexes, or outdoor environments with huge 
elevation variations. On the other hand, the 2D LiDAR 
is functional only in flat areas where objects rest on the 
ground and never form low-height holes or tunnels that 
are still higher than the height of the LiDAR. This does 
make it more appropriate for simpler uses such as 
indoor navigation or warehouse management on a two-
dimensional plane. 

To compare, the frame rate (FPS) capability of these 
sensors also supplements the strengths of 2D Lidar. Fig. 
3 illustrates the frame-rate variation of the 2D and 3D 
LiDAR sensors across repeated trials in Experiment E-
1. The average frame rates are 20.05 Hz for the 2D 
LiDAR and 19.80 Hz for the 3D LiDAR, indicating that 
the difference in frame rate under the imposed 
experimental constraints is minimal. Therefore, Figure 3 
is not intended to demonstrate superiority of one sensor 
over the other in terms of update rate, but rather to 
confirm the temporal stability and repeatability of data 
acquisition across repeated experiments. 

 
4.3 Experiment 2 (E-2) 

 
In LiDAR sensor human detection as Fig. 3, 2D 
performance and accuracy compared to 3D LiDAR have 
broad differences. Although both possess their indivi–
dual strengths, 3D LiDAR is found to be better in terms 
of minimizing errors in human detection since it owns 
the capability to acquire three-dimensional spatial infor–

mation. Detection errors in 3D LiDAR are significantly 
lesser than in 2D LiDAR, essentially because the former 
can separate objects at varying heights and locations and 
reduce misclassification in complicated environments. 

As can be seen in Table 4, all these 2D LiDAR 
errors occur in most of the cases, for example, partial 
occlusion of a person by an object, confusion with 
objects that have a human leg-like shape, and when a 
person and an object are close to each other. These 
errors mainly arise due to the few data points and 
scanning angles that restrict the dataset. Furthermore, 
the numbers in this table show overall disparities in 2D 
and 3D Lidar detection performance in varying con–
ditions. When the object is near the sample as Fig. 3a, 
detection rate of 2D Lidar (52.6%) is far greater than the 
results of 3D Lidar (10.5%). This means that 2D Lidar 
performs better in easier cases. Under more congested 
conditions, both types of Lidar behave similarly, 3D 
Lidar with 15.6% and 2D Lidar with 14.2%. From these 
results, under congested conditions, the enhanced spatial 
perception benefit of 3D Lidar is not a major benefit 
compared to 2D Lidar. 

But in complex scenes, particularly when people are 
close to objects or obstructed by objects, there is 
obvious superiority displayed by 3D Lidar. For instance, 
where people are close to objects as Fig. 3b, In complex 
scenarios involving partial occlusion, the 3D LiDAR 
achieves a human detection rate of 82.7%, significantly 
outperforming the 2D LiDAR (53.9%). Conversely, in 
simple, unobstructed cases, the 2D LiDAR exhibits 
higher detection responsiveness due to its higher frame 
rate. Where people are obstructed by objects as Fig. 3c, 
3D Lidar is able to detect 22.3% whereas 2D Lidar can 
only detect 68.4%. This refers to the higher ability of 
3D Lidar to scan more cluttered and dynamic areas, and 
hence making it extremely useful in actual applications 
where obstructions are of variable height or not 
accessible, showing the function it performs in more 
complex and random situations. 
Table 4. List of percentage of detection error of human in 
each situation. 

LiDAR Situation 
Object 

similar to  
the 

sample 

Crowded People 
close  

to object 

People 
obscured 
 by object 

3D 10.5% 15.6% 82.7% 22.3% 
2D 52.6% 14.2% 53.9% 68.4% 
 
For 3D LiDAR, human detection accuracy is signi–

ficantly higher, and such excellent performance in most 
scenarios except the case when a human and an object 
are very close to each other as Fig. 3d. Overlapped 
points in the point cloud under such conditions make the 
differentiation and accurate identification of humans 
difficult. Such a weakness highlights the importance of 
point cloud segmentation algorithms for enhancing 
detection performance for dense scenes. 

Alternatively, Fig. 4 show a wide speed difference 
of detection between the systems. 2D LiDAR has dou–
ble the frame rate of 3D LiDAR, i.e., at 18 FPS, at 36 
FPS. The higher frame rate means that 2D LiDAR will 
respond quickly to changes in the environment, with 
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rapid updates permissible for use in real-time applica–
tions. But speed comes at the cost of accuracy as 2D 
LiDAR does not capture vertical data to easily detect 
humans from other objects. Therefore, in complex 
scenes containing multiple overlapping objects or 
objects at various heights, 2D LiDAR is more prone to 
missed detection and false positives. 

Results also highlight the difference in performance 
between 2D and 3D Lidar in autonomous robot 
navigation. That is, the robot covered a longer distance 
and took more time to reach the destination when 2D 

Lidar was used as compared to when it used 3D Lidar. 
This is because of the limited perception ability of 2D 
Lidar to scan only one plane in a horizontal direction. 
As a result, the robot could not detect some obstacles 
with a scanning distance longer than the scanning range. 
Precisely, in the experiment, the robot collided with a 
table. This is because 2D Lidar was mounted close to 
the floor, thus having the scanning plane too low to 
detect the table, which, though lower than shelves of 
robot, was above the detection range of the Lidar. 

 
Figure 4. Experimental validation of comparative speed between 2D and 3D LiDAR sensor in case E-2. 

 
(a) 
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(b) 

Figure 5.  Experimental validation of autonomous navigation in Experiment E-3: (a) three-dimensional LiDAR perception of the 
environment, (b) collision-free navigation path enabled by 3D LiDAR sensing. 

4.4 Experiment 3 (E-3) 
 

To enable a direct comparison between 2D and 3D 
LiDAR-based navigation, several path-related features 
were analyzed, including total path length, number of 
reorientations, collision occurrence, and path smooth–
ness. Under identical start–goal configurations, the 
robot equipped with 3D LiDAR consistently gene–rated 
smoother trajectories with fewer abrupt heading chan–
ges, whereas the 2D LiDAR-based navigation exhibited 
additional reorientations caused by incomplete obstacle 
perception. In the tested scenario, the 3D LiDAR-based 
navigation achieved a shorter effective path length and 
zero collision events, owing to its ability to perceive 
obstacle height and spatial continuity. In contrast, the 
2D LiDAR-based navigation relied solely on planar 
sensing, resulting in incomplete obstacle representation 
and occasional path interruption. In Fig. 5, only the pla–
nar navigation outcome was shown to maintain visual 
consistency with the 2D LiDAR representation. How–
ever, this did not sufficiently reflect the three-dimen–
sional perception advantage of the 3D LiDAR. To 
evaluate navigation reliability, each path-planning ex–
periment was executed repeatedly under identical initial 
and goal configurations. Performance indicators such as 
travel distance, completion time, number of reorien–
tations, and collision events were recorded for each run. 
A navigation outcome was considered reliable if 
consistent behavior and collision-free operation were 
observed across repeated trials. 

Nevertheless, under conditions of lower complexity 
and obstructions as well that are stationary to the sur–
face as well, the performance difference between 2D 
and 3D Lidar is less apparent. As indicated by Fig. 6b, 
for the table of this figure, even Lidar 2D and 3D also 
mark it as an impassable area to be shunned. The robot 
equipped with 3D LiDAR completed navigation tasks 

with fewer reorientations, shorter travel distances, and 
zero collision events, whereas the 2D LiDAR configu–
ration experienced collision due to blind spots caused by 
planar scanning. The distance covered and travel time to 
the target location for both Lidar sensors is virtually 
similar, given that the robot will mostly be moving in 
the ground plane and has very little vertical components 
to deal with. For such cases, the additional vertical 
range of 3D Lidar is not as advantageous because the 
terrain itself is not as demanding of three-dimensional 
mapping. This is to say that while 3D Lidar works 
incredibly well in dense obstacle and terrain scenarios, 
the application of 3D scanning lowers in less dense, 
flatter terrain where 2D Lidar also works well. 

 
5. DISCUSSIONS AND POTENTIAL PROSPECT 

 
The experiment findings indicate the superiority of 3D 
Lidar over 2D Lidar in guiding an autonomous robot 
through sophisticated and changing environments. The 
experiment validates the manner in which 3D Lidar 
provides more accurate measurement but also provides 
more competent obstacle detection ability by leveraging 
the vertical dimensionality. This advantage enables 3D 
Lidar-enabled robots to plot more optimal routes and to 
recognize obstacles, shortening travel distances and 
travel times compared to 2D Lidar-enabled robots. 

In addition to the use of 3D LiDAR sensors, an 
alternative approach to overcoming the planar sensing 
limitation of 2D LiDAR involves the deployment of 
multiple 2D LiDAR units arranged in parallel or 
perpendicular scanning planes. Such configurations can 
enrich spatial perception by capturing complementary 
height or angular information, thereby enabling partial 
three-dimensional reconstruction of the environment 
while retaining the advantages of low cost, low power 
consumption, and high frame rate associated with 2D 
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LiDAR sensors. Nevertheless, multi-2D-LiDAR confi–
gurations also introduce additional challenges, including 
sensor calibration, synchronization, data fusion comp–
lexity, and increased mechanical integration effort. 
Furthermore, the resulting spatial representation remains 
sparse compared to dense point clouds provided by a 
single 3D LiDAR sensor, particularly in environments 
with complex geometry or dynamic obstacles.  

While 2D Lidar has a higher frame rate and hence 
offers quicker detection updates, this is balanced against 
its lower precision measurement and inability to mea–
sure vertically differences. Nevertheless, 3D Lidar, tho–
ugh at a lower frame rate, offers higher and more accu–
rate data and is therefore better suited for navigation in 
highly complex obstacle geometry environments. Being 
at a lower frame rate is generally not a minus, as the 
additional information from sensing vertically is well 
worth a slight delay in updates, provided that this 
improves safety and path planning capability. 

Though 3D Lidar is of immense value in spatial 
perception, 2D Lidar remains the optimal choice for an 
application that requires a low-profile solution and 
height-limited robots. In a majority of cases, robots 
inhabit a two-dimensional world and where objects' 
heights are not such a critical issue. Hence, the appli–
cation of 2D Lidar conserves energy, saves capital, and 
simplifies data processing. Typical applications for 2D 
Lidar are delivery robots for indoor use, cleaning robots 
for indoor use, warehouse vehicles that are autonomous, 
and factory production lines, where the environment is 
relatively stationary and does not require vertical object 
detection. Such an environment usually exploits the low 
cost, fast speed, and simplicity of 2D Lidar, especially if 
the activity is constrained to a specific horizontal plane. 

Where there is a need for high-end environmental 
perception, 3D Lidar is a must. Every outdoor autono–
mous robot, search and rescue robot, unmanned aerial 
vehicle (UAV), and mobile robot in unstructured envi–
ronments employ 3D Lidar for complete terrain and 
object detection. 3D Lidar's multi-layer scanning enab–
les robots to detect obstacles of different heights, enab–
les detailed map construction, and enables safe naviga–
tion in difficult environments. Its ability to perceive and 
report three-dimensional environments best fits it to be 
used in scenarios where the robots must move over 
different terrains, i.e., woods, towns, or stretches of hills. 

Furthermore, advances in even more sophisticated 
algorithms and machine learning policies that have the 
ability to process and analyze the vast amount of data 
generated by 3D Lidar have also further increased its 
application in real-world scenarios. As the technologies 
develop further, the application of 3D Lidar in 
autonomous systems will be even more indispensable in 
enabling even greater degrees of autonomy, safety, and 
efficiency. These advancements also enable 3D Lidar to 
be mounted on more compact, cost-efficiently engi–
neered robots, rendering its advantages available to an 
even wider range of industries and applications. 

Briefly, although both the 2D and 3D Lidar 
technologies find their applications within autonomous 
navigation, the greater vision and penetration capability 
of 3D Lidar through complex, dynamic environments 
place it as an indispensable tool for more advanced 

robotic implementations. For these reasons, the present 
study focuses on a direct comparison between a single 2D 
LiDAR and a single 3D LiDAR to clearly highlight the 
fundamental trade-offs between planar and volu–metric 
sensing. A systematic investigation of multi-2D-LiDAR 
configurations and their performance relative to 3D Li–
DAR constitutes an important direction for future work. 

 
6. CONCLUSION  

 
This study presented a systematic experimental compa–
rison between 2D and 3D LiDAR sensing for autono–
mous navigation using a unified robotic platform and 
identical operating conditions. Unlike many existing 
studies that focus on algorithmic improvements or 
single-task evaluations, the present work provides a 
multi-task, system-level assessment supported by repe–
ated real-world experiments. Quantitative results from 
Experiment E-1 demonstrate that the tested 3D LiDAR 
achieves lower positional error and reduced measu–
rement variability compared to the tested 2D LiDAR, 
highlighting the benefit of multi-layer sensing for spa–
tial accuracy. Experiment E-2 further shows that while 
both sensors perform comparably in simple detection 
scenarios, the human detection rate of the 3D LiDAR is 
significantly higher in occluded and cluttered environ–
ments, directly linking three-dimensional perception to 
detection robustness. Experiment E-3 confirms that 
these sensing differences propagate to navigation per–
formance, where 3D LiDAR perception enables smoot–
her trajectories and collision-free operation in environ–
ments containing height-varying obstacles. 

Importantly, the results also reveal that the advantages 
of 3D LiDAR are not universal: the 2D LiDAR remains 
highly competitive in planar, structured environments, 
offering benefits in terms of simplicity, cost, and 
computational efficiency. These findings un–derscore 
that sensor selection should be driven by application 
context rather than generic assumptions about sensing 
accuracy. The novelty of this work lies in its controlled 
experimental framework and its quantitative, task-
spanning comparison of 2D and 3D LiDAR sensing, 
rather than in the proposal of new algorithms. By 
isolating the impact of sensing dimen–sionality under fair 
conditions, this study provides prac–tical, evidence-based 
guidance that complements and extends existing literature 
on LiDAR-based autonomous navigation. 
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КОМПАРАТИВНА СТУДИЈА 2Д И 3Д ЛИДАР 
ТЕХНОЛОГИЈА У ИНДУСТРИЈСКИМ 

ПРИМЕНАМА АУТОНОМНЕ НАВИГАЦИЈЕ 
 

Х.К.Т. Нго, Т.Ф. Нгујен 
 

У области роботике, четири задатка аутономних 
робота, као што су навигација, локализација, пра–
ћење објеката и планирање кретања, играју кључну 
улогу у осигуравању аутономије и интелигенције 
система у сложеном и разноврсном окружењу. Све 
његово функционисање ослања се на радну 
способност ласерског скенера или ЛиДАР (детек–
ција и одређивање удаљености светлости) сензора, 
који постаје обећавајући алат за ове задатке због 
прецизног мерења удаљености и широког видног 
поља. Циљ овог рада је да се процене и упореде 
радне перформансе између 2Д и 3Д ЛиДАР сензора 
у специфичним задацима. У различитим применама, 
2Д ЛиДАР сензор скенира у једној равни, док 3Д 
користи ласере за снимање прецизних 3Д података 
објеката и окружења. Серија експеримената из 
стварног света спроведена је у лабораторијском 
окружењу, фокусирајући се на три главна задатка: 
детекцију и праћење објеката, могућности мапирања 
и планирање кретања. Захваљујући овим практич–
ним тестовима, резултати истичу предности и сла–
бости и 2Д и 3Д ЛиДАР сензора у таквим задацима. 
Експериментални резултати показују да, у поређењу 
са 2Д ЛиДАР-ом, 3Д ЛиДАР смањује грешку ме–
рења до 59% на Y-оси, побољшава тачност људске 
детекције за 28,8% у условима оклузије и елими–
нише навигационе колизије изазване планарним 
слепим тачкама, иако по цену ниже брзине кадрова. 

 


