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Electromechanical Energy Conversion 
inside an Electromagnetic Vibratory 
Actuator: Modeling, Simulation, and 
Validation 
 
This paper covers the development and validation of a nonlinear 
mathematical model of an electromagnetic vibratory actuator used in 
vibratory conveyors. The motivation for this research stems from the need 
for a more detailed understanding of the electromechanical energy-
conversion phenomena that occur during the operation of an 
electromagnetic vibratory actuator. Unlike previous mathematical models, 
which often use linear approximations or separately consider the 
mechanics and electrodynamics of the actuator, the proposed model 
integrates nonlinear electromagnetic effects with the dynamics of the 
electromagnet armature's relative motion, therefore establishing a 
dependence between the electrical quantities in the circuit and the dynamic 
characteristics of the moving element of the electromagnet. The newly 
developed mathematical model was simulated numerically, with the model 
parameters chosen based on a functional laboratory prototype. At the end, 
experimental validation is presented, demonstrating strong agreement with 
the simulation results. 
 
Keywords: Electromechanical energy conversion, Electromagnetic 
vibratory actuator, mathematical modelling. 

 
 

1. INTRODUCTION 
 
The development of modern mechatronic systems requ–
ires a comprehensive approach that considers both 
mechanical and electromagnetic phenomena through 
several phases of system design [1,2]. A key element in 
the design of a machine is the development of its 
dynamic model, which enables engineers to evaluate the 
system's behavior using differential equations before 
physically integrating the machine. This early insight 
into potential system dynamics, energy flows, and per–
formance limits—before building physical prototypes—
reduces development time and minimizes production 
costs [3-7]. However, developing a highly accurate 
model of complex mechatronic systems presents a 
significant challenge. In addition to often complicated 
geometries and kinematic dependencies, the problem is 
further complicated by physical phenomena that cannot 
be described using linear equations. In such situations, 
numerical methods are often applied, including the 
finite element analysis (FEA), which provides a better 
insight into the potential dynamics of the system [8-11]. 

Electromagnetic actuators today represent key com–
ponents of many mechatronic systems due to their 
ability to convert electrical energy into controlled mec–
hanical motion [12,13]. A special group of these actu–
ators is electromagnetic vibratory actuators (EVAs)that 
output controlled vibratory motion of the electromagnet 

armature [14-16]. In addition to the time-varying elec–
tromagnetic circuit, further nonlinearity is introduced by 
the spring's stiffness and damping, which return the 
working element to its initial position, hence providing 
oscillatory motion. 

The efficiency of the electromechanical energy 
conversion process is influenced by both subsystems: 
the design of the electrical converter (i.e., the electro–
magnetic circuit equations) and the mechanical const–
raints of the moving components—stiffness, damping, 
and mass geometry [17,18]. Therefore, the develop–
ment of an accurate mathematical model of EVA 
requires the consideration of coupled electromechanical 
phenomena, which include the behavior of the magnetic 
circuit, losses in the magnetic field, eddy currents, Joule 
losses, but also the armature’s dynamics, spring stif–
fness and damping, various external dissipative effects, 
and workloads. Additionally, the development of a 
detailed actuator model, which includes the interaction 
between electrical and mechanical subsystems, would 
open up opportunities for the development of advanced 
automatic control algorithms, which aim to increase 
energy efficiency, i.e., by maintaining the vibratory 
regime in the areas of resonant frequencies, where the 
dissipative effects are the lowest. 

Previous studies have examined various aspects of 
EVAs, but many of them simplify or decouple the inte–
raction between the electrical and mechanical sub–
systems. For example, some mathematical models of 
EVAs, such as [17] assume constant inductance, while 
the author in [19] neglects coil resistance and treats the 
current as a controllablevariable. Other comprehensive 
mechanical models that include EVAs, although deta–
iled in their mechanical formulation, omit electrical 
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current as a state variable or assume constant inductance 
[19,20]. However, despite the use of simplified and li–
nearized mathematical models, several control algo–
rithms have been developed, and the authors report that 
satisfactory performance was achieved [12,21]. In 
addition, there are purely theoretical conceptual studies 
that examine linear mechanical oscillators without any 
described practical implementation [22]. Overall, these 
studies typically address simplified oscillators with a 
single degree of freedom and do not consider the 
general case of motion, often neglecting gravity. 

This paper describes the electromechanical energy 
conversion process in the EVA and presents a mathe–
matical model formulation. Differential equations of 
relative motion of the armature are derived for the ge–
neral case of vibratory motion. Numerical simulations 
were performed to provide insight into how the elec–
trical quantities of the magnetic circuit change over 
time. Additionally, an experiment was conducted on a 
functional laboratory prototype of an electromagnetic 
vibrating conveyor. The measurement results are expla–
ined, and their correlation with numerical simulation 
results is described at the end of the paper. 

 
2. ELECTROMECHANICAL ENERGY CONVERSION 

INSIDE THE EVA 
 
The operation of the EVA can be understood through its 
coupled electrical and mechanical subsystems. The 
movable part of the mechanical subsystem comprises 
the movable armature, rigidly attached to the vibratory 
trough and supported by composite leaf springs (Fig. 
1).The iron core with the corresponding coil of the EVA 
is rigidly connected to the massive base, which is 
separated from the ground with a set of rubber damping 
elements. The electromagnetic force generated by the 
EVA causes the vibratory trough to oscillate. In this 
way, electromagnetic energy is converted into 
mechanical energy, with most of it providing useful 
work, while the remainder is dissipated as losses. 

 
Figure 1. The EVA positioning inside a vibratory conveyor 

The electrical subsystem includes the electromagnet 
and its control electronics, which generate a time-va–
rying magnetic field in the coil. The interaction between 
the electrical and mechanical subsystems takes place 
through the air gap between the armature and the core: 
coil current variations produce pulses of electro–
magnetic excitation force, which provide mechanical 
movement, while the movement of the armature affects 
the change of the air gap, changing the magnetic field 
and the inductance of the EVA. 

The magnetic field variation generates an elec–
tromagnetic force, acting on the movable armature and 
initiating motion in the mechanical system (Fig. 2). Its 

magnitude and temporal behavior depend on electrical 
excitation, core geometry, winding configuration, arma–
ture kinematics [20], and material properties of the 
armature and core as well [8,9]. 

 
Figure 2. The principle of operation of the EVA 

The conversion of electrical energy into mechanical 
energy within the EVA is rather a complex process and 
cannot be unambiguously formulated as a system of 
differential equations that directly relates one physical 
quantity to another [17,23]. In practice, various appro–
ximations of this process are frequently employed in the 
design of electrical machines [1,24]. Moreover, even in 
theoretical considerations, simplifications are often int–
roduced, in order to obtain more practical analytical 
expressions [15,16].  

The process of electromechanical energy conversion 
can be approximated by means of a block diagram, as 
illustrated in the Fig.3. 

 
Figure 3. The block diagram of the electromechanical 
energy conversion process that occurs inside the EVA 

With an electric current ( )i t  and voltage ( )u t , the 
voltage source, i.e., the electric generator, performs 
work gAδ . A portion of this work is dissipated as Joule 

losses, i.e., heat ( )JAδ , while another portion cont–
ributes to the increase of magnetic energy (d )mE  and to 
the work done by magnetic forces ( )mAδ [15,16]. This 
process can also be mathematically formalized as 
follows: 
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 dg J m mA A E Aδ δ δ= + +  (1) 

Energy is a state function, since it depends only on the 
initial and final state; thus, its change represents a total 
differential (denoted by the vertical letter ‘d’). Work and 
heat, on the other hand, are process functions. They do 
not have a unique value between two states, since they 
depend on the process itself. Their changes are therefore 
not expressed as total differentials, and are denoted by the 
Greek letter δ. For additional explanation, the reader is 
guided to the relevant literature [25, 26]. 

In addition to Joule losses, other forms of energy 
dissipation occur within the electrical circuit, including 
magnetic core saturation, eddy currents, fringing effects, 
and magnetic flux leakage. These effects can be suf–
ficiently mitigated by employing a magnetic material 
with a linear magnetization curve (to avoid saturation), 
by constructing the core from laminated sheets (to 
suppress eddy currents), by designing the core poles 
without sharp edges (to reduce fringing effects), and by 
ensuring that the air gap remains relatively small (to 
minimize flux leakage). Even when present, the signi–
ficance of these losses is on the order of about 2% for 
specifictypical EVA configurations and can therefore be 
neglected [8,9]. 

In the context of dynamical modelling, these effects 
can be partially compensated by introducing a correc–
tion coefficient for the electromagnet’s inductance [27]. 
While no general expression for this coefficient exists, 
an approximate value for a specific EVA design can be 
determined in other ways, for instance, by applying 
FEM-based computer-aided design tools (CAD) for 
electromagnetic field analysis. Still, numerical simu–
lations offer a sufficiently accurate approximation of 
electromechanical energy conversion, with the added 
advantage of speed—taking only minutes compared to 
several hours for FEM analyses [28]. 

On the other hand, it is well known that the change 
in the mechanical energy of a system is equal to the 
work of the external forces acting upon it. In this case, 
the work mAδ performed by the magnetic forces is pri–
marily used to overcome the resistances encountered by 
the mechanical subsystem. These include various dissi–
pative effects ( )WAδ , such as dry and viscous friction, 
air resistance, and similar phenomena, as well as the 
external load work ( )lAδ . Furthermore, a portion of the 
work of the magnetic forces contributes to the increase 
of the total energy of the mechanical subsystem d mechE , 
which may be expressed as: 

 d m W l mehA A A Eδ δ δ= + +  (2) 

The entire process of electromechanical energy con–
version can be expressed in differential form by substi–
tuting (2)into(1). It follows that: 

 d d  g J m W l mehA A E A A Eδ δ δ δ= + + + +  (3) 

One of the first steps in the mathematical modelling 
of a dynamical system is the identification of entities 
capable of storing energy [3-5]. During the considered 
process of electromechanical energy conversion, de–

picted in Fig. 3 and described by the energy balance 
equation given with(3), two such entities can be iden–
tified: the magnetic field and the mechanical subsystem. 
Once their states are known, the state of the electro–
mechanical energy transducer, i.e., the EVA, is uniquely 
determined. 

The magnetic field stores energy via the copper coil, 
while the mechanical subsystem stores energy as the 
kinetic energy of its moving parts and the potential 
energy of its spring-like elements. The research pre–
sented in this paper focuses on the electromechanical 
processes that occur in EVA during the general case of 
vibratory conveying. 

 
3. DYNAMICAL MODEL OF THE ELECTRICAL 

SUBSYSTEM 
 

The EVA, shown in Fig. 2 can be modeled as a mag–
netic circuit, that consists of a magnetic core and an 
armature, separated by two air gaps of equal length 

0zl D q= + , where 0D  denotes the initial value of the 
air gap, and ( )q q t=  represents the relative displace–
ment of the actuator’s armature [20]. Around the mag–
netic core, copper windings are wound to form a coil 
with a total of N turns. 

When an electric current ( )i i t=  begins to flow thro–
ugh the copper windings, an electromagnetic field is ge–
nerated in the vicinity of the coil. If the cross-sectional 
area of the core is equal to A, the total magnetic flux AΦ  
through the cross-section of the core is equal to the pro–
duct of the inductance L of the electromagnet and the 
electric current ( )i t [15,16,20]. In this case, the induc–
tance of the electromagnet that consists of two air gaps of 
equal lengths lz can be calculated as follows [17,20]: 

 
( )

2
0

0
( )

2 ( )
N A

L L q
D q t
μ

= =
+

 (4) 

where 7
0 4 10 H/mμ π −= ⋅ . Furthermore, the change of 

inductance in time is equal to the first derivative of (4): 

 
( )

2
0

2
0

d ( ) ( )
d 2 ( )

N AL q q t
t D q t

μ
= −

+
 (5) 

When the electric current flows through the copper 
windings, two electromagnetic phenomena occur—
Joule losses and the induced electromotive force (EMF). 
Joule losses represent dissipative effects caused by the 
heating of the copper windings and are proportional to 
their resistance ,R  whereas the induced EMF is equal 
to the rate of change of magnetic flux through the con–
sidered cross-section of the magnetic circuit [15,16,20]. 

The EVA from Fig. 2 can also be represented as an 
R-L circuit. Hence, the voltage of the electrical gene–
rator, i.e., the source voltage ( )g gu u t= is equal to the 
sum of the voltage drop across the resistor and the 
induced EMF, namely [20]: 

 
d d d ,

d d d
A

g ind
iu Ri e Ri R LLi i

t t t
= + +

Φ
= + = +  (6) 
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which represents the final differential equation desc–
ribing the change of electrical quantities in the elec–
tromagnet shown in Fig. 2.  

Various modeling approaches exist for electro–
magnetic force, depending on system assumptions and 
complexity. A standard method assumes the force is 
proportional to the square of the current and inversely 
proportional to the square of the distance between 
moving parts [20,29]. Other models consider a linear 
combination of displacement, current, and their product 
to capture nonlinear electromechanical interactions [18, 
30]. Numerical simulations and experiments confirm the 
nonlinear dependence, with force reduction roughly 
proportional to the square of the distance [6]. This re–
search assumes that the magnitude of theforce generated 
due to the change in magnetic field energy can be 
calculated as follows [15,16,20]: 

 
( )

2
20

2
0

( , )
4 ( )

e e
N A

F F q i i
D q t

μ
= =

+
 (7) 

 

4. DYNAMICS OF THE MECHANCIAL SUBSYSTEM 
 

The EVA is embedded within a mechanical system that, 
in general, is time-dependent in its motion. It would be 
unfounded to assume that the core of the electromagnet 
is stationary and to proceed by analyzing only the 
relative displacement between the armature and the ele–
ctromagnetic core. By identifying the equation of 
general motion in an absolute coordinate system with 
the equation of relative motion in a non-inertial refe–
rence frame, one would neglect inertial forces, which 
play a significant role in the armature’s dynamics. 

Furthermore, the armature of the electromagnet is 
not free to move in space (or plane), but rather cons–
trained to a limited rectilinear trajectory of oscillatory 
character [31].  
 
4.1 Analysisof the relative motion 
 
Figure 4 depicts the EVA’s armature in the form ofa 
free body diagram. The observed rigid body is located 
within the non-inertial coordinate system Bξηζ, defined 
by the unit vectors λ , μ , andν . Its position relative to 
the absolute coordinate system Oxyz is described by the 
position vector Br , the transmissive angular velocity 

,pω  and the transmissiveangular acceleration pε , 
which are indicated in green in Fig.4. 

 
Figure 4. The mechanics of the relative motion of the EVA’s 
armature during the general case of vibratory transport 

For better comprehension of the origin and meaning 
of the vectors, the relevant vectors defining the kine–
matics of the body within the non-inertial coordinate 
system—namely the corresponding displacements and 
velocities—are shown in red. Conversely, the vectors 
representing all forces acting on the body during its 
relative motion are depicted in blue. 

Let the ferromagnetic core with copper windings be 
rigidly attached to the non-inertial coordinate system 
Bξηζ. The working element of the electromagnet is the 
armature, whose mass, including all components rigidly 
connected to it, is denoted as mK. The center of inertia of 
these components is located at point K. Suppose the 
armature of the considered electromagnet moves at an 
angle α with respect to the axis Bξ. In that case, the 
direction of relative motion can be represented by the 
local unit vector cos sine α λ α μ= ⋅ + ⋅  which can also 
be expressed as: 

 ( )cos sin 0 Te α α=  (8) 

Since the armature undergoes rectilinear oscillatory 
motion, all points within its volume follow identical 
trajectories and are therefore subject to the same laws of 
relative motion dynamics as the material point K [31].  
The motion of the material point is considered within 
the non-inertial coordinate system Bξηζ. Its motion with 
respect to the absolute coordinate system is defined by 
the position vector of its coordinate origin: 

 ( ) ( ) ( ) ( )B B B B Br r t x t i y t j z t k= = ⋅ + ⋅ + ⋅  (9) 

Since the motion is planar, for simplicity and wit–
hout loss of generality, the analysis proceeds with zB = 
const = 0. In this case, the translational velocity of the 
origin of the non-inertial coordinate system is gi–ven 
with ( , , 0)T

B B Bv x y= , while the translational acce–le–

ration is .( , ,0)T
B B Ba x y=  Furthermore, because the 

motion is planar, the coordinate system Bξηζ  posses–
ses an angular velocity p kω ϕ=  and an angular acce–

leration .p kε ϕ=  
Hence, the position vector of the center of inertia of 

the movable part of the electromagnet in the absolute 
coordinate system is given with: 

 KBKr r ρ= +  (10) 

where Br is the position vector of point B in the absolute 
coordinate system Oxyz, given with(9), and  Kρ is the 
position vector of point K in the non-inertial coordinate 
system Bξηζ. Since the given system performs an osci-
llatory form of motion with a single degree of freedom, its 
motion can be represented by a single generalized 
coordinate q(t). Accordingly, the change in the local 
position vector of any point on the body can be expressed 
as ( )q t eρΔ = , which, expressed in terms of its com–
ponents in the local coordinate system, takes the form: 

 { } { }
cos

( ) ( ) sin
0

q t e q t
α

ρ α
⎧ ⎫⎪ ⎪Δ = ⋅ = ⎨ ⎬
⎪ ⎪⎩ ⎭

 (11) 
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thus, the relative position of point K with respect to the 
origin of the local coordinate system can be expressed as: 

 

{ } { } { }
,0

,0 ,0

,0

,0

cos
( ) sin

00
( ) cos
( )sin

0

K

K K K

K

K

q t

q t
q t

ξ α
ρ ρ ρ η α

ξ α
η α

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= + Δ = +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭

+⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭

 (12) 

where ,0Kρ denotes the position of point K at the initial 
moment, i.e., when the electromagnet is at rest. In that 
case, the vectors of relative velocity and relative 
acceleration in the local coordinate system are given 
with 

 { } { }
cosd ( ) sin

d 0
r Kv q t

t

α
ρ α

⎧ ⎫⎪ ⎪= = ⎨ ⎬
⎪ ⎪⎩ ⎭

 (13) 

 { } { }
2

2

cosd ( ) sin
d 0

r Ka q t
t

α
ρ α

⎧ ⎫⎪ ⎪= = ⎨ ⎬
⎪ ⎪⎩ ⎭

 (14) 

where, for the sake of clarity, the subscript K has been 
omitted in the notation for relative velocity and relative 
acceleration, since the motion is rectilinear and 
therefore all points on the armature possess identical 
velocities and accelerations. 

Since the motion of the body in the relative 
coordinate system is of interest, it is necessary to 
express all vectors within the non-inertial coordinate 
system. The unit vectors of the absolute coordinate 
system, expressed in terms of the basis vectors of the 
moving coordinate system, are given as: 

 
cos sin 0
sin cos 0

0 10

i
j
k

ϕ λ ϕ μ ν
ϕ λ ϕ μ ν
λ μ ν

= ⋅ − ⋅ + ⋅
= ⋅ + ⋅ + ⋅

⋅ ⋅ + ⋅+=
 (15) 

which yields the coordinate transformation matrix from 
the absolute coordinate system Oxyz  to the relative 
coordinate system Bξηζ in the form: 

 
cos sin 0

[ ] sin cos 0
0 0 1

B
ϕ ϕ
ϕ ϕ

⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

 (16) 

The components of the translational acceleration 
vector Ba , the angular velocity vector pω , and the 

angular acceleration vector pε , which appear in the 
expressions for fictitious forces, are initially defined in 
the absolute coordinate system. They must be 
transformed into the non-inertial coordinate system 
Bξηζ. Regarding the vector Ba , its components in the 
relative coordinate system are given with: 

 { } { }( ) (0)
cos sin

[ ] sin cos
0

B B
B B

r
B B

x y
a B a x y

ϕ ϕ
ϕ ϕ
+⎧ ⎫⎪ ⎪= = − +⎨ ⎬

⎪ ⎪⎩ ⎭
 (17) 

while the components of the vectors pω  and pε remain 
unchanged: 

 { } { }( ) (0)
0

[ ] 0r
p pBω ω

ϕ

⎧ ⎫⎪ ⎪= = ⎨ ⎬
⎪ ⎪⎩ ⎭

 (18) 

 { } { }( ) (0)
0

[ ] 0r
p pBε ε

ϕ

⎧ ⎫⎪ ⎪= = ⎨ ⎬
⎪ ⎪⎩ ⎭

 (19) 

which can be easily inferred by observing the 
arrangement of zero elements in the transformation 
matrix [ ]B  within (16). Since these operations involve 
vector cross products, it is more convenient to represent 
the vectors given with equalities (18) and (19) in form 
of their dual objects: 

 
0 0

0 0
0 0 0

d
p

ϕ
ω ϕ

−⎡ ⎤
⎡ ⎤ ⎢ ⎥=⎣ ⎦ ⎢ ⎥⎣ ⎦

 (20) 

 
0 0

0 0
0 0 0

d
p

ϕ
ε ϕ

−⎡ ⎤
⎡ ⎤ ⎢ ⎥=⎣ ⎦ ⎢ ⎥⎣ ⎦

 (21) 

 
4.2 Fundamental equation of the relative motion 
 
The forces shown in the free-body diagram in Fig. 4 
define the law of relative motion of the material point in 
the non-inertial coordinate system Bξηζ. The funda–
mental equation of dynamics for the relative motion of 
point K in this case is given with: 

in in
K r e c w l K p corm a R F F F F m g F F= + + + + + + +  (22) 

Since the motion under consideration is rectilinear, 
the desired equation of motion can be obtained by 
projecting the aforementioned equation onto the 
direction of motion, which in this case is defined by the 
vector e  that’s defined with (8). Consequently, one 
can write: 

( ) { } ( ) { } ( ) { } ( ) { }
( ) { } ( ) { } ( ) { }
( ) { } ( ) { }

K r e c

w l K
in in
p cor

m a e R e F e F e
F e F e m g e
F e F e

⋅ = ⋅ + ⋅ + ⋅
+ ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ (23) 

The left-hand side of equation (23) represents the 
acceleration of the armature in the non-inertial 
coordinate system, projected onto the direction of 
motion defined by the vector e : 

{ }
cos cos

( ) ( ) sin sin ( )
0 0

T

K r K Km a e m q t m q t
α α
α α

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 (24) 

The right-hand side of (23)represents the total effect 
of the active and inertial forces acting on the armature. 
For subsequent analysis, the contribution of each force 
is determined individually, with each of them being 
multiplied scalarly by the vector e . 

 
4.3 Force analysis 
 
During the motion of the body along the surface, the 
reaction force R  can be decomposed into a normal 
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component, i.e., the surface reaction N , and a horizontal 
component, i.e., the dry friction force Fμ .  

During the deflection of the composite springs, the 
axial forces generated within the springs ensure the 
rectilinear motion [31]. Formally speaking, such a cons–
traint can be classified as a restrictive, non-ideal, rhe–
onomic (non-stationary), and non-holonomic (non-
integrable) constraint [32]. 

Since viscous friction formally does not occur at the 
contact point between the armature and the constraint, 
the constraint can be represented as an ideal one, 
supplemented by an additional dissipative friction force, 
which is modelled separately in the form of a fictitious 
damping element with the damping coefficient βe. Ac–
cordingly, the vector R is oriented perpendicularly to 
the direction of motion defined by the vector e . There–
fore, it follows that: 

 ( ){ } 0,R e =  (25) 

which was to be expected, given the considerations 
above and the direction of the vector R . 

The electromagnetic force of the vibratory actuator 
eF  arises from changes in the energy within the mag–

netic field. It is collinear with the direction of the rela–
tive displacement of the armature, hence: 

 ( ){ }
cos cos

( ) sin sin ( )
0 0

T

e e eF e F t F t
α α
α α

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= − = −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 (26) 

The effect of the restitutive forces due to spring defor–
mation is expressed through the vector cF . If the sys–
tem contains a total of lc parallel springs with individual 
stiffness values ki, the overall equivalent stiffness of the 
system will be ke = lc · kc. For the relative displacement 
of point K, defined by the vector ρΔ  (given with (12)), 
its value is given as c eF k ρ= − ⋅ Δ .By performing a 

scalar multiplication with the vector e (given with (8)), 
the total effect of the restitutive force due to the 
deformation of the composite springs is obtained: 

 ( ){ } ( ){ } ( )c e eF e k e k q tρ= − Δ = −  (27) 

The vector wF  represents the main vector of the sy–
stem’s dissipative forces. Since the armature is sur–
rounded by air, the only resistance to its motion comes 
from the aerodynamic drag force and the effect of 
viscous friction within the composite springs. Given that 
the velocities of the vibratory trough in steady-state 
vibratory regimes are not significant, the influence of 
aerodynamic drag during motion is neglected. On the 
other hand, the effects of viscous friction are more 
significant and are proportional to the relative velocity 
of the ends of the fictitious damper. In this case, that 
would be the relative velocity of point K. Therefore, the 
damping force of the system is expressed as 

,w e rF vβ= − ⋅  where e c clβ β= ⋅  represents the equi–
valent damping coefficient for lc parallel-arranged com–

posite springs. Given that the relative velocity is always 
colinear with the unit vector e it follows that: 

 ( ){ } ( ){ } ( )w e r eF e v e q tβ β= − = −  (28) 

Following on, the effect of the external load is exp–
ressed through the vector lF , which acts on the elec–
tromagnetic armature during its relative motion. Its 
magnitude and direction are, in general, not deter–
ministic quantities. Since its components in the non-
inertial coordinate system are also time-dependent, i.e., 

( ) , ( ) , ( )l l l lF F t F t F tξ λ η μ= = ⋅ + ⋅ , its scalar product 

with the vector e  is given with: 
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= +  (29) 

Additionally, since the armature has a significant 
mass, the effect of gravitational forces is represented by 
the vector Km g , where g g j= − ⋅ . As j  is the unit 
vector of the absolute coordinate system, the effect of 
gravitational forces needs to be converted to the relative 
coordinate system by multiplication with the trans–
formation matrix [B] given with (16), and by multi–
plying scalarly with the vector e , it follows: 

 ( ){ } ( ){ }( ) [ ] sin( )r
K K Km g e m B g e m g α ϕ= = − +  (30) 

The effect of inertial forces acting on the body 
during its relative motion is expressed through the 
components of the transmissive inertial force in

pF and 

the Coriolis force .in
corF  

The transmissive translational component of the 
inertial force is calculated using the formula 

,
in
p B BF ma= − . By substituting the translational com–

ponent of the transmissive acceleration given with (17),  
and multiplying scalarly with the vector e , it follows: 

 

( ){ } ( ){ }
( )

( )
,

cos( ) sin( )

rin
p B K

K B

B

B

F e m a e

m x yα ϕ α ϕ

= −

= − + + +  (31) 

Following on, the transmissive rotational component 
of the inertial force is calculated using the formula 

1 ( )in
p K p KF m ε ρ= − × , where the transmissive angular 

acceleration is expressed through its dual object from 
(21). By performing the vector cross product with the 
position vector of point K, given in (12),  and perform 
scalar multiplication with the unit vector e  it follows 
that: 

 

( ){ } ( ){ }1

,0 ,0

[ ]

( sin cos ).

in d
p K p K

K K K

F e m e

m

ε ρ

ϕ ξ α η α

= −

= − −  (32) 

The centripetal component of the inertial force is 
given by 2 ( ( ))in

p K p p KF m ω ω ρ= − × × . If the transmis–
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sive angular velocities are expressed using their dual 
objects given with (20) and relative position vector 
given with (12) and multiplied by the unit vector e : 

 

( ){ } ( )( )( ){ }

( )

2

2
,0 ,0

[ ] [ ]

cos s( in )

in d d
p K p p K

K K K

F e m e

m q

ω ω ρ

ϕ ξ α η α

= − ×

= + +  (33) 

The last component of the inertial force is the Co–
riolis inertial force, which arises as a consequence of 
motion within a rotating coordinate system. It is cal–
culated using the formula 2 ( )in

cor K p rF m vω= − × . If the 
transmissive angular velocities are expressed using their 
dual objects given with (20), the expression of relative 
velocity  (13) substituted and multiplied by a unit vector 
e  the considered expression will evaluateto zero: 

 ( ){ } ( ){ }2 [ ] 0in d
cor k p rF e m v eω= − =  (34) 

 

4.4 Differential equation of rectilinear motion of the 
EVA’s armature 

 
Differential equation of motion for the considered 
vibratory system can be obtained if expressions from 
previous subsections are substituted into (23). After 
rearrangement, the mentioned equation can be written 
down in the following form: 

( ) ( , ) ( , ) ,K e e e K Km q q k q F t L t tβ ϕ ϕ+ + = − + +Φ  (35) 

where: 
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The right-hand side of the differential equation of 
motion for the single-degree-of-freedom oscillator, gi–
ven with (35), represents the total excitation force acting 
on the oscillatory system. Here, the electromagnetic 
force of the vibratory actuator ( )eF t is the only cont–
rollable variable of the system. The remaining two 
terms on the right-hand side cannot be explicitly 
controlled during the operation of the vibratory actuator 
under standard operating conditions of the vibratory 
conveyor. 

The term ( , )KL tϕ  represents the influence of the 
electromagnetic actuator’s working load. In addition to 
the working load, which is, in the general case, a non-
deterministic quantity, the influence of gravitational 
forces is also included in the case where the actuator is 
not positioned horizontally (α ≠ 0). Even if it is positi–
oned horizontally, the assumptions of rotation of the 
actuator in the vertical plane (φ ≠ 0) brings gravitational 
acceleration into the effect. 

The consequence of motion within a non-inertial 
coordinate system is captured by the scalar function 
ΦK(φ,t). Put simply, when the vibratory actuator—i.e. 

the electromagnet—is embedded within a non-
stationary mechanical assembly, additional (fictitious) 
forces arise that affect the actuator’s dynamics. In other 
words, the governing law of the air gap variation is 
altered due to the presence of the electromagnetic force. 
 
4.5 EVA as an exciting element inside the vibratory 

conveyor 
 
The armature of the electromagnet is rigidly attached to 
the massive base of the vibratory conveyor. Theore–
tically, point B, which represents the origin of the non-
inertial coordinate system, can be placed anywhere in 
the absolute coordinate system Oxyz. Consequently, the 
relative position vector of point K inside the local 
coordinate system Bξηζ also changes, in accordance 
with (12). Therefore, let point B be located at the center 
of inertia of the massive base. Following the conc–
lusions from [20,31,33] the physical interpretation of 
the symbolic quantities within (35) is as follows: 
• The newly introduced generalized coordinate q(t), 

which determines the relative displacement of the 
electromagnet armature, actually represents the fo–
urth generalized coordinate of the considered sys–
tem in [20,33], and its directly proportional to the 
size of the air gap inside the EVA.  

• The variables Bx and By represent the orthogonal 
components of the transmissive acceleration of the 
center of inertia of the vibratory base. In this case, 
they are identical to the second time derivatives of 
the first two generalized coordinates from the afo–
rementioned references. 

• As a consequence of the coincidence of point B 
with the center of inertia of the massive base, the 
rotation angle φ of the coordinate system Bξηζ 
represents the rotation angle of the massive base 
around its axis, i.e., the third generalized coordinate 
from the aforementioned references. Consequently, 
their derivatives are equivalent. 

• The angle α defines the inclination of the elec–
tromagnetic vibratory actuator relative to the hori–
zontal plane. Since it is perpendicular to the leaf 
composite springs, it is also the angle formed by the 
springs with the vertical plane. 

• The vector ,0Kρ defines the distance of point K 
from the center of inertia of the base at the initial 
moment. Its components ,0Kξ  and ,0Kη represent 
the horizontal and vertical distances, respectively. 
If the system is at rest at initial moment, absolute 
and relative coordinate systems’ axes are parallel. 
Hence, for the sake of simplicity, and one can write 

,0K xξ ≡ Δ and ,0K yη ≡ Δ . 

• If the armature is connected to the electromagnet’s 
core via a total of cl parallel composite springs, 

each with stiffness 312c
EIk
L

=
 
[31] and damping 

coefficient βc, the equivalent stiffness is ke =  

312 c
c

EIl
L

, and the equivalent damping coefficient is 

βe = lcβc. In previous expression E represents 



 

30 ▪ VOL. 54, No 1, 2026 FME Transactions
 

Young’s modulus of elasticity of the leaf spring; I 
isan axial moment of inertia around the bending 
axis and cL  is the length of unclamped section of 
the spring. 

Considering the cumulative effect of the inertial 
forces for the general case of relative motion of EVA, 
that’s expressed with a scalar function given with (37), 
there are several ways to further simplify the differential 
equation of motion of the mechanical subsystem of the 
EVA, given with (35). 

 
4.6 The assessment of the inertial force that acts on 

the EVA’s armature 
 

At the first glance, it is evident that the term 
cos( ) sin( )B Bx yα ϕ α ϕ+ + + originates from the 

translational acceleration of the center of inertia of the 
vibratory base, i.e., point B. The other two terms in (37)
result from the rotation of the massive base around its 
axis. In addition to the angular velocity and angular 
acceleration, their magnitude is also influenced by the 
relative position of the centers of inertia of the massive 
base and the vibratory trough, as shown in Fig.5. 

 
Figure 5. Position of vibratory trough’s center of inertia 
relative to base’s center of inertia 

The transmissive centripetal component of the iner–
tial force 1( )in

pF , in addition to the square of the angular 
velocity of the base, is largely defined by the term 
( cos sin )x y qα αΔ + Δ + , i.e., the distance between the 
centers of inertia of the trough and the base, projected 
onto the direction of motion. It is evident that, besides 
the relative displacement of point K, the centripetal 
component is also influenced by the position of the 
common center of inertia of all bodies rigidly attached 
to the armature, expressed by the aforementioned sum, 
which represents a constant value. 

The transmissive component of inertial force ( 2
in
pF ) 

is mostly influenced by the angular acceleration of the 
vibratory base. It is multiplied by the length  (Δxsinα – 
Δycosα) which represents the distance between points B 
and K, perpendicular to the direction of displacement of 
the vibratory trough. From Fig. 5, it can be observed 
that this component is independent of the air gap’s size 
and is determined solely by the geometry of the system. 
This transmissive component of the inertial force can be 
eliminated in two ways: 
• If the base has no angular acceleration or it can be 

neglected, i.e. 0ϕ ≈ ,  which further implies to φ 

≈ 0, since it is meaningless to speak of uniform 
rotational motion of a mechanical system such as a 
vibratory conveyor. 

• If the vector BK  coincides with the direction of 
motion of the electromagnet, defined by the unit 
vector e . However, this problem should already 
be addressed during the mechanical design of the 
conveyor itself. 

And finally, following previous consideration where 
angular velocity can be neglected ( 0ϕ ≈ ) the Coriolis 
force can be assumed zero, as well. 

At the very least, by assuming that the electromagnet 
is placed on a stationary, horizontal, and flat surface 
( , , , 0)ϕ ϕ ϕ α = , eq. (35) reduces to: 

 ,( ) ( ) ,K e e e l K Bm q q k q F t F t m xξβ+ + = − + −  (38) 

where the translational component of the transmissive 
inertial force remains, arising from the horizontal disp–
lacement of the ferromagnetic core of the elect–
romagnet, i.e. ( )B Bx x t= . To properly account for this 
effect, one must either know the governing law of the 
core’s displacement or introduce an additional diffe–
rential equation, together with the mass of the elec–
tromagnet core. Such actuators are referred to as two-
mass systems and are particularly suitable in appli–
cations where additional inertial forces are required, 
such as for mixing, shaking, or detaching material from 
the working element of a vibratory machine [18,29]. 
 
5. VALIDATION OF THE MATHEMATICAL MODEL 

 
The differential equation describing the change of 
electrical quantities in the EVA, given with (6), together 
with the differential equation of the relative motion of 
the electromagnet armature, given with (35), provide the 
starting point for forming the mathematical model for 
the considered case of the EVA.  

The process of electromechanical energy conversion 
can, to a certain extent, be modeled with satisfactory 
accuracy by introducing specific assumptions and app–
roximations. For stable, low-intensity vibration regimes, 
where the damping elements are sufficiently stiff and 
the base mass is significantly larger than the mass of the 
vibrating structure, the displacements of the iron core 
are negligible compared to the displacements of the 
armature. Under these conditions, the core can be 
approximated as stationary, as done in [19,21]. 

On the other hand, modelling the influence of the 
transported material presents a significant challenge. In 
general, granular materials cannot be described by ana–
lytical expressions. Their behaviour must be modelled 
using methods based on statistical mechanics and mate–
rial rheology [18], or by numerical and computational 
approaches [34,35]. For the purposes of validating the 
mathematical model of the EVA, the influence of the 
transported material will be neglected. However, in sta–
ble vibration regimes, this influence can be indirectly 
incorporated through a corrected damping coefficient, 
as shown in [19,21]. 

With respect to the aforementioned approximations 
and considerations (35) simplifies to the following form: 
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 ( ) sinK e e e Km qq q k F t m gβ α= − + − −  (39) 

In this situation, together with the electrical subsystem 
of the EVA, three fundamental forms of energy are 
distinguished, which define the state of the observed 
system: 
• Elastic potential energy, which is being accumu–

lated by the deformation of leaf springs. It’s pro–
portional to the armature’s relative displacement 
from the initial position. 

• Kinetic energy of the whole moving subsystem; 
considering the approximations above, it can be 
calculated using the relative velocity of the arma–
ture, considering that the overall mass of this 
subsystem is equal to mk. 

• Magnetic energy, that’s being predominantly 
accumulated inside the air gap. It’s mostly effected 
by the intensity of the electric current that flows 
through coils. 
 

5.1 Mathematical model for the considered EVA  
 

For a successful formulation of the mathematical model, 
it is necessary that the proposed system possesses as 
many state variables as there are entities capable of 
storing energy [17,36]. Considering that the observed 
electromechanical system contains three elements 
capable of storing energy, it is necessary to define three 
state variables, that will describe the system’s state at 
each moment: 

1. Relative displacement: x1(t) = q(t);  
2. Relative velocity of the armature: x2(t) = vr(t)  
3. Electrical current in the coil: x3(t) = i(t);  

which require definition of three separate state equa–
tions. Given that ( ) ( ),rv t q t= the first state equation can 
be formulated as follows: 

 1
2

d ( )
d
x x t
t
=  (40) 

Following on, the second state equation can be 
obtained if the expression for electromagnetic force 
from (7)is substituted into (39)and state variables are 
replaced:  

 

2
2 1

2
20
32

0 1

d
d

sin
4( )

e e

K K

K

kx
x x

t m m

N
m

A
x g

D x

β

μ
α

= − −

−
+

−  (41) 

Final, third equation ought to define dynamics of the 
electrical current that runs through the copper coils of 
the EVA, hence forming the electromagnetic field 
around it. For this purpose, eq. (6) can be rearranged as 
follows: 

 1d ( ) ,
d g

i dLL u t i R
t dt

− ⎛ ⎞= − +⎜ ⎟
⎝

⎡ ⎤
⎢ ⎥
⎣ ⎦⎠

 (42) 

which, after the substitutions for inductance and its first 
derivative with their expressions from (4) and (5), and 
swapping for aforementioned state variables, evaluates 
to: 
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Furthermore, if the state vector and its first deri–
vative are introduced as: 

( ) 31 2
1 2 3

dd d ,;
d d d

T
T xx xX x x x X

t t t
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (44) 

the system of differential equation given with (40), (41) 
and (43) can be also written in a compact form, which is 
more suitable for computer, i.e. numeric computations: 

 ( ) ( ) ( ),X A X B X U t= + ⋅  (45) 

where: 
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 (46) 

and 
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 (47) 

 

5.2 Description of the laboratory setup and 
definition of model parameters 

 
The proposed mathematical model of the electro–

magnetic vibration actuator was validated on a func–
tional prototype of a vibratory conveyor realized in the 
Mechatronics laboratory of the Institute Mihajlo Pupin. 
The prototype has a total mass of the vibrating trough of 
mK = 0.83kg, while the initial air gap is D0 = 4.7 mm. 
The vibrating base is rigidly fixed to a massive iron 
ballast, minimizing its displacements and allowing it to 
be considered stationary during the operation of the 
EVA, as shown in Fig. 6. 

 
Figure 6. The laboratory prototype of the considered 
vibratory conveyor with an inductive sensor attached 

The relative displacements of the vibrating trough 
were measured using an inductive sensor Ni10-18-LiU-
H1141 manufactured by Turck. The placement of this 
sensor is also shown in the Fig.  6. This sensor provides 
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a linear output voltage in the range of 0.05–10V 
corresponding to relative displacements from 0.5–4mm 
More precisely, within the linear measurement range, a 
unit change in voltage corresponds to an exact relative 
displacement of 0.352mm. 

To determine the dynamic characteristics of the 
vibrating conveyor, an experimental study was con–
ducted involving pulse mechanical excitation of the 
system. In this case, a short mechanical impulse was 
introduced to the system in the direction of the relative 
displacement of the armature of the electromagnetic 
vibrating actuator, which induced a response in the form 
of free damped oscillations. The response was measured 
using the aforementioned inductive sensor, and the 
analog signal was recorded with a high-resolution 
digital oscilloscope (Fig. 7). 

A Fast Fourier Transform (FFT) was applied to the 
measurement data to examine the frequency com–
ponents of the free damped oscillations of the vibratory 
trough. The resulting natural frequency of the observed 
system equals to fn = 55Hz which will be used as the 
excitation frequency for both the numerical simulations 
and the following laboratory tests. 

Following on, the damping ratio of damped vib–
rations can be calculated using the logarithmic decre–
ment. Despite the fluctuations that occur as an effect of 
AC/DC conversion of the input signal, the average 
damping ratio was calculated to be 0.028.eζ ≈  This 
estimation can be considered as valid given that typical 
viscous damping ratios for composite leaf springs take 
value from 1% to 5% [37], [38]. 

 
Figure 7. System’s response after a mechanical impulse 
alongside the relative displacement of the EVA 

For the oscillating mass of mK = 0.83kg and linear 
frequency of fn = 55Hz, i.e. angular frequency ωn = 2πfn 
= 345.6 rad/s, the equivalent stiffness and damping of 
the system equates to:  

 2 99134.67N/m 99135N/me n Kk mω ⋅= = ≈  (48) 

 2 15.91N/(m/s)e e e Kk mβ ζ= =  (49) 

The schematic of power converter circuit supplying 
the EVA coils is depicted in Fig.8. Measurements taken 
at the EVA’s terminals showed the electromagnet’s 
resistance and inductance to be R = 96Ω and L0 = 
1.56H, respectively, where the index 0 indicates that the 
measurements were taken at initial moment. While the 
coil’s number of turns N and the effective cross-
sectional area of the air gap S could not be directly 

measured, their combined effect was inferred from their 
combined influence, as follows: 

2 20 0
7
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2 2 4.7mm 1.56H 11669.24m
4 10 H/m

D LAN
μ π −

⋅ ⋅
= = =

⋅
 (50) 

A constant supply voltage of Vg = 300V
 
is applied. 

The control unit includes two switches, S1 and S2, which 
are driven by a pulse width modulation signal (PWM). 
When both switches are closed, current intensity rises 
through the coils due to the applied positive voltage. 
After opening the switches, the magnetic energy stored in 
the EVA coils is returned through the freewheeling 
diodes D1 and D2 in the power source Vg. 

 
Figure 8. The schematic of power converter circuit for 
supplying the EVA 

The voltage applied to the EVA can be modelled as 
follows [19]: 
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, 1

( ) , 0 ( ) 0
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g D

g g D

V u
u t V u i t

=⎧
⎪= − = ∧ >⎨
⎪
⎩

 (51) 

where Vg denotes the voltage source, and uD is the 
output of the PWM control function with frequency fn and an adjustable preset duty cycle δ, which determines 
the width of the applied voltage pulse. 

For enhanced clarity parameters that constitute the 
mathematical model of EVA given with (45) are given 
in Table 1. 
Table 1. Parameter values used for numerical simulation 

Parameter name Value

Oscillating mass mk 0.83kg  

Equivalent damping coefficient βe 15.91N(m/s)

Equivalent stiffness ke 99135N/m  

Number of turns × cross section N2A 211669.24m  

Initial length of the air gap D0 4.7mm  

Resistance of the copper coil R 96Ω  

Initial inductance of the copper coil L0 1.56H  

Supply voltage Vg 300V  

Duty cycle δ 10%  

Driving frequency fn 55Hz  
 
Following on, the initial state of the system needs to 

be defined as well. Due to the weight of the vibratory 
trough and all components rigidly attached to it, the 
value of the air gap at the initial moment is reduced by: 
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 5
0

sin 3,385 10 m,K

e
q m g

k
α −= − = − ⋅  (52) 

and given the fact that the armature starts from the state 
of rest and that the initial electrical current is equal to 
zero, the state vector at the initial moment takes 
following value: 

 ( )5
0 3.385 10 0 0

T
X −= − ⋅  (53) 

Both the numerical simulation and laboratory expe–
riment will be performed with lesser excitation magni–
tudes, i.e. the vibrations will be near the system’s equ–
ilibrium point. Although inductance varies drastically 
with slight displacements, leaf springs’ stiffness can be 
assumed constant for relatively small bending. For 
larger bending angles, stiffness becomes nonlinear and 
the trough deviates from a rectangular path, i.e., its 
motion can’t be considered as rectilinear anymore [31]. 

Furthermore, given that the vibratory trough moves 
rectilinearly, the inductive sensor measures the distance 
to a surface that remains parallel to its tip, yielding valid 
measurements. 
 
6. NUMERICAL SIMULATION RESULTS 
 

Figure 9 shows one impulse of the electrical current. 
It depicts the dependence between electrical values in the 
circuit from Fig. 8. Upon application of voltage to the 
vibratory actuator terminals (R-L circuit), eind ab–ruptly 
rises to 300V then gradually decreases as the electrical 
current increases, reaching 269.25V, which corresponds 
precisely to the difference between the source voltage and 
the Joule losses given by R·i at that instant. 

 
Figure 9. Changes in electrical current and induced voltage 
during one period of the resonant vibratory regime 

After control signal opens the switches, the current 
starts decreasing, and the value of the induced voltage 

drops instantaneously to -330.3V , then gradually rises 
until the electrical current drops to zero. After this 
moment, there is no electrical current in the copper coil, 
hence the induced voltage drops to zero. One period 
lasts for exactly 36.36ms. After multiple consecutive 
impulses, the armature starts the desired vibratory 
motion.  Figure 10 illustrates the process of reaching a 
steady-state vibratory regime under excitation by an 
impulse-shaped resonant frequency. The blue curve 
represents the relative displacements of the EVA’s 
armature q(t), while the red curve corresponds to the 
sequence of current pulses. 

 
Figure 10. The gradual rise of vibration amplitudes during 
the initial phase of the resonant vibratory regime 

During the initial phase, the vibration amplitudes 
gradually increase because the energy input exceeds the 
energy lost due to dissipative effects (viscous friction 
and Joule heating). Since viscous damping is 
proportional to the armature velocity, energy dissipation 
grows as the velocity amplitude rises. Eventually, the 
system reaches a stable vibratory regime in which 
excitation and dissipation are balanced, and the 
oscillations stabilize. For a given vibratory regime, the 
oscillations stabilize at peak-to-peak values of 0.74mm. 

The presented graph illustrates the essence of a 
resonant vibratory regime - the system receives exactly the 
amount of energy required to compensate for dissipative 
losses. In this regime, current pulses occur as the armature 
passes through the equilibrium position during the return 
stroke. This phenomenon is even more clearly observed in 
Fig. 11, where several oscillation periods are magnified. In 
addition to current and displacement, the translational 
velocity of the armature, ( )q t , is shown in orange. It can 
be observed that the electrical current peaks exactly when 
the translational velocity of the armature attains its 
maximum amplitude - occurring exactly at the moment the 
armature passes through the equilibrium position. 

 
Figure 11. Displacement, velocity and electrical current during the transient phase of resonant vibratory regime 
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For better comprehension of the electromagnetic 
processes that occur inside the EVA, Fig. 12illustrates 
the change of all significant electromagnetic quantities 
during the observed resonant vibratory regime. The 
simulated source voltage is shown in navy blue; it 
should be noted that the actual source voltage does not 
have negative halves, and the function ug represents 
solely the result of the piecewise function given with 
(51). At the moment when ug 

changes sign, the current 
(red) reaches a maximum value of 0.33A . The trian–
gular current pulse corresponds to the triangular pulse of 
the magnetic flux AΦ , depicted in light blue, reaching a 
maximum of 0.515T. As mentioned before, the first 
derivative of the magnetic flux represents the induced 
voltage at the electromagnet terminals eind, which shown 
in green.  

The remaining three terms that constitute the 
induced EMF expression — the electromagnet induc–
tance, its first derivative, and the time derivative of the 
current — are shown in olive green, purple, and pink, 
respectively. It can be observed that the variation of the 
inductance follows a sinusoidal pattern, inversely 
proportional to the sinusoid of the armature relative 
displacement. In other words, when the armature is 
closest to the core, the inductance reaches its maximum, 
as expected from(4). Moreover, the first derivative of 
the inductance, according to(5), partially resembles the 
shape of the armature relative velocity. Deviations from 
the ideal sinusoidal shape are noticeable at the moments 
of the current pulse, identical to those observed in the 
relative velocity graph in Fig. 10. 

 
7. EXPERIMENTAL VALIDATION 

 
The validity of the proposed mathematical model was 
tested using the previously described laboratory 
prototype. The pulse frequency was set to fn = 55Hz 
with a duty cycle of δ = 10%. A screenshot from the 
oscilloscope showing the vibratory regime, with a 

horizontal time scale of 5ms per division, i.e. 5ms/div. 
The displacement signal from the inductive sensor is 
presented in Fig. 13. In addition to the displacement 
signal, the oscilloscope also monitored the electrical 
current and voltage across the electromagnet. 

 
Figure 13. Current (yellow), voltage (blue) and the displace–
ment (purple) during the experimental resonant regime of 
the vibratory conveyor  

The probe that measured the electrical current has a 
transfer characteristic of 0.1A/10mV and was monitored 
on channel CH1 with a vertical scale of 20mV/div. In 
this configuration, the height of one division of the 
current signal corresponds to 0.2A. The voltage probe, 
on the other hand, has a 200:1 attenuation ratio. Since 
the voltage was recorded on channel CH2 with a 
vertical scale of 1V/div one oscilloscope division 
corresponds to 200V of the measured signal. 

The voltage signal from the inductive displacement 
sensor was amplified, giving a scale of 10V/div. 
Considering the sensor’s transfer ratio, this amounts to a 
total sensor division of 0.352mm/div. The zero point in 
Fig. 13 is set to clearly indicate the time intervals bet–
ween two switch closures, corresponding to consecutive 
voltage jumps from 0 to 300V, which span slightly over 
3.6 divisions, corresponding to 18.182 ms. 

 
Figure 12. Changes in significant electromagnetic quantities during the operation of the EVA 
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For better clarity, Fig. 14 shows an enlarged view of 
one oscillation period with a time scale of 2ms/div 
where the peak of the electrical current pulse coincides 
with the moment the armature passes through its equi–
librium position during the return stroke of the vibratory 
trough. In the observed resonant regime shown in Fig. 
14, the displacement signal oscillates over approxi–
mately 1.9 divisions, which correspondsto a working 
stroke of 0.669mm and oscillation amplitudes of 
approx. 0.345mm. 

After the switching circuit closes, the voltage signal 
rises for about 1.5div, which corresponds to 300V. At 
this moment, the current also begins to increase with a 
slightly exponential characteristic. As the current rises, 
the voltage across the electromagnet decreases, consis–
tent with the expected Joule losses in the circuit. Alt–
hough the sampling rate during oscilloscope digitization 
is not particularly high, it can be observed that the 
voltage drops by approximately. 0.1div, i.e. roughly 
20V. After 1.8ms , the switches open again, causing the 
voltage to abruptly fall by exactly -600V , i.e.three 
vertical divisions.Within this oscillation regime, the 
triangular current pulse peaks at exactly 1.5 div, 
corresponding to approximately 0.3A.  

 
Figure 14. The coincidence of current's peak values (yel–
low) and voltage (blue) switching moment with an equilib–
rium point of the vibratory trough (purple) during the reso–
nant vibratory regime 

 

7.1 Comparison between experimental and 
simulation results 

 
This subsection presents a brief discussion of the cor–
relation between simulated results and experimental 
values. The oscilloscope readings that were shown in 
Fig. 13 were exported in .csv format and post-proces–
sed. Given that Fig. 13 depicts a stable vibratory regime, 
the simulation results were taken after the transient 
period of 0.5s (as shown in Fig. 10). The corresponding 
curves were manually aligned; hence, there is no 
temporal axis enumeration in the following figures.  

Figure 15 depicts the comparison between actual 
(measured) and simulated displacement of the vibratory 
trough. Measured displacement values oscillate between 
-0.36mm and 0.31mm, while simulated values oscillate 
in the range between -0.41mm and 0.33mm. This 
equates to a working stroke of 0.67mm and an estimated 
one of 0.74mm.  

Following this, the resemblance between the simu–
lated and actual induced voltages on the electromagnet is 
shown in Fig. 16. Simulated impulses match the shape 

and width of the actual ones. The voltage drop due to 
Joule heating is somewhat similar, even though the actual 
voltage drop is lower when the polarity reverses, i.e., 
when the switches return to the open position. 

 
Figure 15. Comparison between measured (blue) and 
simulated (dashed red) values of the trough’s displacement 

 
Figure 16. Comparison between measured (blue) and 
simulated (dashed orange) values of induced voltage 

When the voltage undergoes rapid changes during 
the second half-cycle, i.e., when it assumes reverse 
polarity, discrete shifts in voltage level are expected. 
However, in the experimental measurements, a slight 
curvature is observed as it returns to zero (Fig. 17). This 
effect arises from the diodes' physical nonlinearity at 
low voltages and can be disregarded.  

Additionally, another notable characteristic can be 
observed in Fig. 17: the induced voltage never drops to 
zero between two impulses. It takes a positive value bet–
ween 0V and 8V that can’t be determined precisely due 
to the oscilloscope's measurement discretization during 
the AC/DC conversion. This effect is also noticeable in 
the moment the switches close, when the voltage 
suddenly rises to 309V instead of the predicted 300V. 

 
Figure 17. Comparison between measured (blue) and 
simulated (dashed orange) values of induced voltage 

This effect could be considered just an error in the 
measurement process, but its source lies deeper in the 
electronics circuit of the EVA power supply. Given that 
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there is a small constant voltage in the circuit, when the 
switches are supposedly open, the current gradually 
increases. This effect can’t be observed in oscilloscopic 
screen captures (Fig. 13 and Fig. 14). Still, it is clearly 
visible in the post-processed data of the readings of 
electrical current, that’s given in Fig. 18. When the 
current’s triangle impulse goes back to zero, the 
intensity of the electrical current rises and takes a value 
of 0.02A before the next triangle impulse starts. Even 
though the measured and simulated impulses’ peaks 
coincide,the triangles of actual current impulses peak at 
0.305A while the simulated ones peak at 0.343A.  

 
Figure 18. Comparison between measured (blue) and 
simulated (dashedorange) values of electrical current 

Furthermore, a comparison between measured va–
lues and those obtained from numerical simulation is 
presented in Table 2. The absolute and relative errors of 
estimated values compared to values obtained with the 
laboratory experiment. 
Table 2. Comparison of the results of the numerical 
simulation and the values obtained during the laboratory 
experiment 

Physicalvalue Estimated 
value 

Measured 
value 

Absolute  
error 

Relative 
error 

Current’s 
peak 0.343A 0.305A 0.038A 12.5% 

Working  
stroke 0.74mm 0.67mm 0.07mm 10.5% 

 
8. CONCLUSION AND DISCUSSION 

 
This research focuses on electromechanical energy con–
version within an EVA during operation. Unlike 
previous studies [19-21], that decouple electrical from 
mechanical dynamics, the approach presented in this 
paper accounts for their nonlinear interaction. Furt–
hermore, previous approaches often develop mathema–
tical models for the specific case of EVA, e.g., treating 
it as a single-degree-of-freedom oscillator or neglecting 
gravity. In contrast, the presented mathematical model 
considers the general case, in which the size of the 
electromagnet’s air gap is determined by the dynamics 
of the electromagnet armature's relative motion.  

This study models the EVA with three state vari–
ables: the armature's relative velocity and displa–cement, 
and the electrical current flowing through the copper coil. 
Several previous studies adopt a similar approach but 
don’t treat the current as a state variable; instead, they 
treat it as a control variable, i.e., an inde–pendently 
controllable quantity. This approach demon–strates the 
interdependencies between the electrical current and the 

dynamic properties of the aramture, thereby proving that 
the current can’t be considered a control quantity. Unlike 
prior models, which often rely on various approxi–
mations, this approach considers variable inductance and 
the resistance of the copper coil. 

The proposed mathematical model was validated 
with numerical simulation and a laboratory experiment 
on a laboratory prototype of a vibratory conveyor. Du–
ring the experiment, the armature’s displacement, 
electrical current, and induced voltage were measured 
and compared with results from numerical simulation, 
showing strong resemblance between the numerical 
simulation and the actual vibratory regime.  

However, slight discrepancies can be observed bet–
ween measured and estimated values, arising from the 
nonlinearity of EVA’s power supply electronic circuit at 
low voltage levels, as the experimental setup was desig–
ned for high-voltage levels used in industrial envi–
ronments. The comparison between the measured and 
estimated values shows relative errors of 12.5% for peak 
amplitudes of electrical current and 10.5% for the 
working stroke.Several factors contribute to the overall 
error metric: the experimental setup's poor performance at 
low voltages and the approximation of a three-di–
mensional electromagnetic field as a scalar equation. 
Magnetic flux fringing around the air gap was neglected, 
resulting in lower inductance. For lower estimated 
inductances, the current rises faster, hence the higher 
peak amplitudes. Consequently, as the electromagnetic 
force depends on the square of the current, higher exci–
tation forces will result in larger displacements. 

Furthermore, numerical simulation results provide 
insight into how various electrical quantities change du–
ring the observed vibratory regime (as shown in Fig. 12). 
This opens new possibilities for advanced sensor–less 
drive techniques that do not require an inductive sensor, 
in which only inductance is measured and current pulses 
are terminated accordingly. This concept represents a 
potential direction for future research, as well as the 
introduction of CAD/FEA tools for accurate three-
dimensional modelling of electromagnetic fields, thereby 
incorporating magnetic flux fringing around the air gap. 
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ЕЛЕКТРОМЕХАНИЧКО ПРЕТВАРАЊЕ 

ЕНЕРГИЈЕ УНУТАР ЕЛЕКТРОМАГНЕТНОГ 
ВИБРАЦИОНОГ АКТУАТОРА: 

МОДЕЛИРАЊЕ, СИМУЛАЦИЈА И 
ВАЛИДАЦИЈА 

 
У.Љ. Илић, Ж.В. Деспотовић, М.П. Лазаревић, 

Е.А. Вег  
 

У оквиру рада описан је развој и валидација 
нелинеарног математичког модела електромаг–
нетног вибрационог актуатора, који је заступљен у 
вибрационим транспортерима. Мотивација за ово 
истраживање проистиче из потребе за детаљнијим 
разумевањем феномена електромеханичког претва–
рања енергије, који се дешава током експлоатације 
једног електормагнетног вибрационог актуатора. За 
разлику од досадашних математичких модела, који 
често бивају моделирани помоћу линеарних апрок–
симација или засебним разматрањем механике и 
електродинамике актуатора, предложени модел има 
за циљ интеграцију нелинеарних електромагнених 
ефеката са динамиком релативног кретања котве 
електромагнета, тако успостављајући зависност 
између електричних величина у струјном колу и 
динамичких карактеристика покретног елемента 
електромагнета.  Новодобијени математички модел 
је симулиран помоћу нумеричких симулација, при 
чему су параметри модела узети по узору на функ–
ционални лабораторијски прототим. На крају је 
описана и експериментална валидација, која пока–
зује значајно слагање са симулационим резултатима. 

 


