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Electromechanical Energy Conversion
inside an Electromagnetic Vibratory
Actuator: Modeling, Simulation, and
Validation

This paper covers the development and validation of a nonlinear
mathematical model of an electromagnetic vibratory actuator used in
vibratory conveyors. The motivation for this research stems from the need
for a more detailed understanding of the electromechanical energy-
conversion phenomena that occur during the operation of an
electromagnetic vibratory actuator. Unlike previous mathematical models,
which often use linear approximations or separately consider the
mechanics and electrodynamics of the actuator, the proposed model
integrates nonlinear electromagnetic effects with the dynamics of the
electromagnet armature's relative motion, therefore establishing a
dependence between the electrical quantities in the circuit and the dynamic
characteristics of the moving element of the electromagnet. The newly
developed mathematical model was simulated numerically, with the model
parameters chosen based on a functional laboratory prototype. At the end,
experimental validation is presented, demonstrating strong agreement with

the simulation results.
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1. INTRODUCTION

The development of modern mechatronic systems requ—
ires a comprehensive approach that considers both
mechanical and electromagnetic phenomena through
several phases of system design [1,2]. A key element in
the design of a machine is the development of its
dynamic model, which enables engineers to evaluate the
system's behavior using differential equations before
physically integrating the machine. This early insight
into potential system dynamics, energy flows, and per—
formance limits—before building physical prototypes—
reduces development time and minimizes production
costs [3-7]. However, developing a highly accurate
model of complex mechatronic systems presents a
significant challenge. In addition to often complicated
geometries and kinematic dependencies, the problem is
further complicated by physical phenomena that cannot
be described using linear equations. In such situations,
numerical methods are often applied, including the
finite element analysis (FEA), which provides a better
insight into the potential dynamics of the system [8-11].

Electromagnetic actuators today represent key com—
ponents of many mechatronic systems due to their
ability to convert electrical energy into controlled mec—
hanical motion [12,13]. A special group of these actu—
ators is electromagnetic vibratory actuators (EVAs)that
output controlled vibratory motion of the electromagnet
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armature [14-16]. In addition to the time-varying elec—
tromagnetic circuit, further nonlinearity is introduced by
the spring's stiffness and damping, which return the
working element to its initial position, hence providing
oscillatory motion.

The efficiency of the electromechanical energy
conversion process is influenced by both subsystems:
the design of the electrical converter (i.e., the electro—
magnetic circuit equations) and the mechanical const—
raints of the moving components—stiffness, damping,
and mass geometry [17,18]. Therefore, the develop—
ment of an accurate mathematical model of EVA
requires the consideration of coupled electromechanical
phenomena, which include the behavior of the magnetic
circuit, losses in the magnetic field, eddy currents, Joule
losses, but also the armature’s dynamics, spring stif—
fness and damping, various external dissipative effects,
and workloads. Additionally, the development of a
detailed actuator model, which includes the interaction
between electrical and mechanical subsystems, would
open up opportunities for the development of advanced
automatic control algorithms, which aim to increase
energy efficiency, i.e., by maintaining the vibratory
regime in the areas of resonant frequencies, where the
dissipative effects are the lowest.

Previous studies have examined various aspects of
EVAs, but many of them simplify or decouple the inte—
raction between the electrical and mechanical sub-—
systems. For example, some mathematical models of
EVAs, such as [17] assume constant inductance, while
the author in [19] neglects coil resistance and treats the
current as a controllablevariable. Other comprehensive
mechanical models that include EVAs, although deta—
iled in their mechanical formulation, omit electrical
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current as a state variable or assume constant inductance
[19,20]. However, despite the use of simplified and li—
nearized mathematical models, several control algo—
rithms have been developed, and the authors report that
satisfactory performance was achieved [12,21]. In
addition, there are purely theoretical conceptual studies
that examine linear mechanical oscillators without any
described practical implementation [22]. Overall, these
studies typically address simplified oscillators with a
single degree of freedom and do not consider the
general case of motion, often neglecting gravity.

This paper describes the electromechanical energy
conversion process in the EVA and presents a mathe—
matical model formulation. Differential equations of
relative motion of the armature are derived for the ge—
neral case of vibratory motion. Numerical simulations
were performed to provide insight into how the elec—
trical quantities of the magnetic circuit change over
time. Additionally, an experiment was conducted on a
functional laboratory prototype of an electromagnetic
vibrating conveyor. The measurement results are expla—
ined, and their correlation with numerical simulation
results is described at the end of the paper.

2. ELECTROMECHANICAL ENERGY CONVERSION
INSIDE THE EVA

The operation of the EVA can be understood through its
coupled electrical and mechanical subsystems. The
movable part of the mechanical subsystem comprises
the movable armature, rigidly attached to the vibratory
trough and supported by composite leaf springs (Fig.
1).The iron core with the corresponding coil of the EVA
is rigidly connected to the massive base, which is
separated from the ground with a set of rubber damping
elements. The electromagnetic force generated by the
EVA causes the vibratory trough to oscillate. In this
way, electromagnetic energy is converted into
mechanical energy, with most of it providing useful
work, while the remainder is dissipated as losses.

Electromagnetic Vibratory

Actuator Vibratory Trough |

Leaf Springs

Damping
Elements

Massive
Base

Figure 1. The EVA positioning inside a vibratory conveyor

The electrical subsystem includes the electromagnet
and its control electronics, which generate a time-va—
rying magnetic field in the coil. The interaction between
the electrical and mechanical subsystems takes place
through the air gap between the armature and the core:
coil current variations produce pulses of electro—
magnetic excitation force, which provide mechanical
movement, while the movement of the armature affects
the change of the air gap, changing the magnetic field
and the inductance of the EVA.

The magnetic field variation generates an elec—
tromagnetic force, acting on the movable armature and
initiating motion in the mechanical system (Fig. 2). Its
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magnitude and temporal behavior depend on electrical
excitation, core geometry, winding configuration, arma—
ture kinematics [20], and material properties of the
armature and core as well [8,9].

Copper coils The armature

Ferromagnetic

Motion
direction

Voltage

source Electromagnetic

force

Figure 2. The principle of operation of the EVA

The conversion of electrical energy into mechanical
energy within the EVA is rather a complex process and
cannot be unambiguously formulated as a system of
differential equations that directly relates one physical
quantity to another [17,23]. In practice, various appro—
ximations of this process are frequently employed in the
design of electrical machines [1,24]. Moreover, even in
theoretical considerations, simplifications are often int—
roduced, in order to obtain more practical analytical
expressions [15,16].

The process of electromechanical energy conversion
can be approximated by means of a block diagram, as
illustrated in the Fig.3.

u(t)¢ i(t)¢

| Generator |

5A,

dE,,

Joule Heating Magnetic Field

§Al 6AW

Work Load dE,.cn

| Mechanical Subsystem |

{qw {%

Figure 3. The block diagram of the electromechanical
energy conversion process that occurs inside the EVA

| Dissipative Effects |

With an electric current i(¢) and voltage u(?), the
voltage source, i.e., the electric generator, performs
work 64, . A portion of this work is dissipated as Joule
losses, i.e., heat(0A4;), while another portion cont—
ributes to the increase of magnetic energy (dE,,) and to

the work done by magnetic forces (04,,) [15,16]. This

process can also be mathematically formalized as
follows:
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54, =64, +dE,, +54, (1)

Energy is a state function, since it depends only on the
initial and final state; thus, its change represents a total
differential (denoted by the vertical letter ‘d”). Work and
heat, on the other hand, are process functions. They do
not have a unique value between two states, since they
depend on the process itself. Their changes are therefore
not expressed as total differentials, and are denoted by the
Greek letter d. For additional explanation, the reader is
guided to the relevant literature [25, 26].

In addition to Joule losses, other forms of energy
dissipation occur within the electrical circuit, including
magnetic core saturation, eddy currents, fringing effects,
and magnetic flux leakage. These effects can be suf—
ficiently mitigated by employing a magnetic material
with a linear magnetization curve (to avoid saturation),
by constructing the core from laminated sheets (to
suppress eddy currents), by designing the core poles
without sharp edges (to reduce fringing effects), and by
ensuring that the air gap remains relatively small (to
minimize flux leakage). Even when present, the signi—
ficance of these losses is on the order of about 2% for
specifictypical EVA configurations and can therefore be
neglected [8,9].

In the context of dynamical modelling, these effects
can be partially compensated by introducing a correc—
tion coefficient for the electromagnet’s inductance [27].
While no general expression for this coefficient exists,
an approximate value for a specific EVA design can be
determined in other ways, for instance, by applying
FEM-based computer-aided design tools (CAD) for
electromagnetic field analysis. Still, numerical simu—
lations offer a sufficiently accurate approximation of
electromechanical energy conversion, with the added
advantage of speed—taking only minutes compared to
several hours for FEM analyses [28].

On the other hand, it is well known that the change
in the mechanical energy of a system is equal to the
work of the external forces acting upon it. In this case,
the work 04, performed by the magnetic forces is pri—

marily used to overcome the resistances encountered by
the mechanical subsystem. These include various dissi—

pative effects (04 ), such as dry and viscous friction,
air resistance, and similar phenomena, as well as the
external load work (94;) . Furthermore, a portion of the
work of the magnetic forces contributes to the increase
of the total energy of the mechanical subsystem dE,,; ,
which may be expressed as:

The entire process of electromechanical energy con—
version can be expressed in differential form by substi—
tuting (2)into(1). It follows that:

04, =04, + dE, + 64y + 64, + dE,,, 3)
One of the first steps in the mathematical modelling
of a dynamical system is the identification of entities

capable of storing energy [3-5]. During the considered
process of electromechanical energy conversion, de—
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picted in Fig. 3 and described by the energy balance
equation given with(3), two such entities can be iden—
tified: the magnetic field and the mechanical subsystem.
Once their states are known, the state of the electro—
mechanical energy transducer, i.e., the EVA, is uniquely
determined.

The magnetic field stores energy via the copper coil,
while the mechanical subsystem stores energy as the
kinetic energy of its moving parts and the potential
energy of its spring-like elements. The research pre—
sented in this paper focuses on the electromechanical
processes that occur in EVA during the general case of
vibratory conveying.

3. DYNAMICAL MODEL OF THE ELECTRICAL
SUBSYSTEM

The EVA, shown in Fig. 2 can be modeled as a mag—
netic circuit, that consists of a magnetic core and an
armature, separated by two air gaps of equal length
l,=Dy+q, where D, denotes the initial value of the

air gap, and ¢ =q(t) represents the relative displace—
ment of the actuator’s armature [20]. Around the mag—
netic core, copper windings are wound to form a coil
with a total of N turns.

When an electric current i =i(f) begins to flow thro—
ugh the copper windings, an electromagnetic field is ge—
nerated in the vicinity of the coil. If the cross-sectional
area of the core is equal to 4, the total magnetic flux @,
through the cross-section of the core is equal to the pro—
duct of the inductance L of the electromagnet and the
electric current i(¢) [15,16,20]. In this case, the induc—

tance of the electromagnet that consists of two air gaps of
equal lengths /, can be calculated as follows [17,20]:

2
L=Lig)=3 N A )

(Do + Q(t))

where 1, = 47 -107 H/m . Furthermore, the change of
inductance in time is equal to the first derivative of (4):

di(g) _ N4
dr 2(Dy +q(0))

4(t) (&)

When the electric current flows through the copper
windings, two electromagnetic phenomena occur—
Joule losses and the induced electromotive force (EMF).
Joule losses represent dissipative effects caused by the
heating of the copper windings and are proportional to
their resistance R, whereas the induced EMF is equal

to the rate of change of magnetic flux through the con—

sidered cross-section of the magnetic circuit [15,16,20].
The EVA from Fig. 2 can also be represented as an

R-L circuit. Hence, the voltage of the electrical gene—

rator, i.e., the source voltage u, =u, (t) is equal to the

sum of the voltage drop across the resistor and the
induced EMF, namely [20]:

@ :
Uy =Ri+e,, :Ri+dd—tA:Ri+%i+Lﬂ

, (6
de de ©
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which represents the final differential equation desc—
ribing the change of electrical quantities in the elec—
tromagnet shown in Fig. 2.

Various modeling approaches exist for electro—
magnetic force, depending on system assumptions and
complexity. A standard method assumes the force is
proportional to the square of the current and inversely
proportional to the square of the distance between
moving parts [20,29]. Other models consider a linear
combination of displacement, current, and their product
to capture nonlinear electromechanical interactions [18,
30]. Numerical simulations and experiments confirm the
nonlinear dependence, with force reduction roughly
proportional to the square of the distance [6]. This re—
search assumes that the magnitude of theforce generated
due to the change in magnetic field energy can be
calculated as follows [15,16,20]:

F,=F(q.)=—""" %

4. DYNAMICS OF THE MECHANCIAL SUBSYSTEM

The EVA is embedded within a mechanical system that,
in general, is time-dependent in its motion. It would be
unfounded to assume that the core of the electromagnet
is stationary and to proceed by analyzing only the
relative displacement between the armature and the ele—
ctromagnetic core. By identifying the equation of
general motion in an absolute coordinate system with
the equation of relative motion in a non-inertial refe—
rence frame, one would neglect inertial forces, which
play a significant role in the armature’s dynamics.

Furthermore, the armature of the electromagnet is
not free to move in space (or plane), but rather cons—
trained to a limited rectilinear trajectory of oscillatory
character [31].

4.1 Analysisof the relative motion

Figure 4 depicts the EVA’s armature in the form ofa
free body diagram. The observed rigid body is located
within the non-inertial coordinate system B¢&y(, defined

by the unit vectors A , I ,andV . Its position relative to

the absolute coordinate system Oxyz is described by the
position vector 7, the transmissive angular velocity

@,, and the transmissiveangular acceleration &,

which are indicated in green in Fig.4.

\ Ry 0,
y . Ap
R e
7] FXH - K
Be > »
1::7l ﬁ[\ F‘(‘,’()I'
. mkg
ap
- k
¢ F :
7y B\ o(0)]
oWy, Ep -
O ©z x=

Figure 4. The mechanics of the relative motion of the EVA’s
armature during the general case of vibratory transport
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For better comprehension of the origin and meaning
of the vectors, the relevant vectors defining the kine—
matics of the body within the non-inertial coordinate
system—namely the corresponding displacements and
velocities—are shown in red. Conversely, the vectors
representing all forces acting on the body during its
relative motion are depicted in blue.

Let the ferromagnetic core with copper windings be
rigidly attached to the non-inertial coordinate system
Bénd. The working element of the electromagnet is the
armature, whose mass, including all components rigidly
connected to it, is denoted as mg. The center of inertia of
these components is located at point K. Suppose the
armature of the considered electromagnet moves at an
angle a with respect to the axis B¢ In that case, the
direction of relative motion can be represented by the

local unit vector € =cosa - A +sina - fi which can also
be expressed as:

E:(cosa sina O)T ®)

Since the armature undergoes rectilinear oscillatory
motion, all points within its volume follow identical
trajectories and are therefore subject to the same laws of
relative motion dynamics as the material point K [31].
The motion of the material point is considered within
the non-inertial coordinate system B&nd. Its motion with
respect to the absolute coordinate system is defined by
the position vector of its coordinate origin:

FB:FB(t):xB(t)‘;+yB(t)'j+ZB(t)'E (€))

Since the motion is planar, for simplicity and wit—
hout loss of generality, the analysis proceeds with zz =
const = 0. In this case, the translational velocity of the
origin of the non-inertial coordinate system is gi—ven

with vy = (%5, j/B,O)T , while the translational acce—le—

ration is @z = (Xp,75,0)". Furthermore, because the
motion is planar, the coordinate system B¢yl posses—
ses an angular velocity @, = @k and an angular acce—
leration &, = ¢k.

Hence, the position vector of the center of inertia of

the movable part of the electromagnet in the absolute
coordinate system is given with:

g =Tp + Pk (10)
where 75 is the position vector of point B in the absolute

coordinate system Oxyz, given with(9), and P is the

position vector of point K in the non-inertial coordinate
system B&y(. Since the given system performs an osci-
llatory form of motion with a single degree of freedom, its
motion can be represented by a single generalized
coordinate ¢(¢). Accordingly, the change in the local
position vector of any point on the body can be expressed
asAp =q(t)é, which, expressed in terms of its com—

ponents in the local coordinate system, takes the form:

Cosa
{AB} =4q(1)-{e} = q() sil(l)a (11)
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thus, the relative position of point K with respect to the
origin of the local coordinate system can be expressed as:

$k.0 cosa
{'BK,O}+{A/5}: Nk.o ¢ +49() sir(l)a
0

{Px}

$k.o tq)cosa
Nko+q(@)sina (12)
0

where py , denotes the position of point K at the initial

moment, i.e., when the electromagnet is at rest. In that
case, the vectors of relative velocity and relative
acceleration in the local coordinate system are given
with

d cosa
) =4 Pxj =4y sina (13)
4 0
d2 cosa
{Ezr}=?{[){<}=ij(1) sir(l)a (14)

where, for the sake of clarity, the subscript K has been
omitted in the notation for relative velocity and relative
acceleration, since the motion is rectilinear and
therefore all points on the armature possess identical
velocities and accelerations.

Since the motion of the body in the relative
coordinate system is of interest, it is necessary to
express all vectors within the non-inertial coordinate
system. The unit vectors of the absolute coordinate
system, expressed in terms of the basis vectors of the
moving coordinate system, are given as:

|

=cosg-A—sing-fi+0-v

P~

=sing-A+cosp-fi+0-V (15)
k= 0A+ 0-g+lv

|~

which yields the coordinate transformation matrix from
the absolute coordinate system Oxyz to the relative

coordinate system B&;( in the form:

cosp sing 0
[B]=|—-sin@ cose O (16)
0 0 1

The components of the translational acceleration
vectordy , the angular velocity vector @,, and the

angular acceleration vector&,, which appear in the

expressions for fictitious forces, are initially defined in
the absolute coordinate system. They must be
transformed into the non-inertial coordinate system

B&nl. Regarding the vectordy , its components in the
relative coordinate system are given with:

) o Xpcos@+ jpsing
{55_;)}:[3]{52)}: —)'c'BsingoaLj}Bcow) a7

while the components of the vectors @, and £, remain

unchanged:
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o) -mfa) ol o

4
)-mp)-fol o
%

which can be easily inferred by observing the
arrangement of zero elements in the transformation
matrix [B] within (16). Since these operations involve
vector cross products, it is more convenient to represent

the vectors given with equalities (18) and (19) in form
of their dual objects:

d ¥ —(;pg 2
= 0
Lot _g 0 0 0
[0 - 0
[g;f]__(g 8 0 @1

4.2 Fundamental equation of the relative motion

The forces shown in the free-body diagram in Fig. 4
define the law of relative motion of the material point in
the non-inertial coordinate system B¢y, The funda—
mental equation of dynamics for the relative motion of
point K in this case is given with:

mgd, =R+ F,+F,+F, +F +mcg+F) +F},

cor

(22)

Since the motion under consideration is rectilinear,
the desired equation of motion can be obtained by
projecting the aforementioned equation onto the
direction of motion, which in this case is defined by the

vector € that’s defined with  (8). Consequently, one
can write:

(&) +(F,)-(e) (23)

The left-hand side of equation (23) represents the
acceleration of the armature in the non-inertial
coordinate system, projected onto the direction of

motion defined by the vector € :

T
cosa cosa

my (a@,){e} = my () sir(l)a sir(;a =mg(t) (24)

The right-hand side of (23)represents the total effect
of the active and inertial forces acting on the armature.
For subsequent analysis, the contribution of each force
is determined individually, with each of them being

multiplied scalarly by the vector € .
4.3 Force analysis

During the motion of the body along the surface, the
reaction force R can be decomposed into a normal

VOL. 54, No 1, 2026 = 27



component, i.e., the surface reaction N , and a horizontal
component, i.e., the dry friction force F, PE

During the deflection of the composite springs, the
axial forces generated within the springs ensure the
rectilinear motion [31]. Formally speaking, such a cons—
traint can be classified as a restrictive, non-ideal, rhe—
onomic (non-stationary), and non-holonomic (non-
integrable) constraint [32].

Since viscous friction formally does not occur at the
contact point between the armature and the constraint,
the constraint can be represented as an ideal one,
supplemented by an additional dissipative friction force,
which is modelled separately in the form of a fictitious
damping element with the damping coefficient f,. Ac—

cordingly, the vector R is oriented perpendicularly to

the direction of motion defined by the vector € . There—
fore, it follows that:

(R){e}=o, (25)

which was to be expected, given the considerations

above and the direction of the vector R .
The electromagnetic force of the vibratory actuator

F, arises from changes in the energy within the mag—

netic field. It is collinear with the direction of the rela—
tive displacement of the armature, hence:

- cosx r cosa
(£ ){e}=-F.0) sinasin = =F,(0) (26)

The effect of the restitutive forces due to spring defor—
mation is expressed through the vector F, . If the sys—

tem contains a total of /. parallel springs with individual
stiffness values k;, the overall equivalent stiffness of the
system will be &k, = I, - k.. For the relative displacement
of point K, defined by the vector Ap (given with (12)),

its value is given as F, =—k,-Ap By performing a

scalar multiplication with the vector € (given with (8)),
the total effect of the restitutive force due to the
deformation of the composite springs is obtained:

(F.){e} = k. (4p){e} = —k.q(t) 27)

The vector F, represents the main vector of the sy—

stem’s dissipative forces. Since the armature is sur—
rounded by air, the only resistance to its motion comes
from the aerodynamic drag force and the effect of
viscous friction within the composite springs. Given that
the velocities of the vibratory trough in steady-state
vibratory regimes are not significant, the influence of
aerodynamic drag during motion is neglected. On the
other hand, the effects of viscous friction are more
significant and are proportional to the relative velocity
of the ends of the fictitious damper. In this case, that
would be the relative velocity of point K. Therefore, the
damping force of the system is expressed as

F,=-p,-v,, where B, =I.-f, represents the equi—
valent damping coefficient for /. parallel-arranged com—
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posite springs. Given that the relative velocity is always
colinear with the unit vector € it follows that:

(F)@e=-B.G) e =-a0) @9

Following on, the effect of the external load is exp—
ressed through the vector F,, which acts on the elec—

tromagnetic armature during its relative motion. Its
magnitude and direction are, in general, not deter—
ministic quantities. Since its components in the non-
inertial coordinate system are also time-dependent, i.e.,

F,=F(t)=F,&(t)- A+ F,,n(t)- @i, its scalar product

with the vector € is given with:

. £ () " (cosa
(F){e}=1F,0 {sina
0 0

=F ¢(t)cosa+F , (t)sina 29)

Additionally, since the armature has a significant
mass, the effect of gravitational forces is represented by

the vector mgg, where g=—g-j. As j is the unit

vector of the absolute coordinate system, the effect of
gravitational forces needs to be converted to the relative
coordinate system by multiplication with the trans—
formation matrix [B] given with (16), and by multi—

plying scalarly with the vector € , it follows:
my (8"){e} = mc[B)(2){e} = -mygsin(a+p) (30)

The effect of inertial forces acting on the body
during its relative motion is expressed through the

components of the transmissive inertial force Fz’,” and

the Coriolis force F"

cor*
The transmissive translational component of the
inertial force is calculated wusing the formula

F}’;’,’B =-mdy. By substituting the translational com-—

ponent of the transmissive acceleration given with (17),
and multiplying scalarly with the vector € , it follows:

(£ ) (e} = —mi (a5 ) {2}
=—my (X cos(a + @)+ g sin(ar +¢)) (31)
Following on, the transmissive rotational component
of the inertial force is calculated using the formula
w1 =M (€,% Pr), where the transmissive angular
acceleration is expressed through its dual object from

(21). By performing the vector cross product with the
position vector of point X, given in (12), and perform

scalar multiplication with the unit vector € it follows
that:

min ) (= d1(= \fz
(£ )12} =—milep 1) e}
= —mg (g sina - gcosa).  (32)
The centripetal component of the inertial force is

given by Fy = —my (@, x (@, x py)) . If the transmis—
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sive angular velocities are expressed using their dual
objects given with (20) and relative position vector

given with (12) and multiplied by the unit vector € :
(Foa )&} = (-mite (100151 )) 2}
=my ((/'))2 (ExoCOsa+1 o sina +q) (33)

The last component of the inertial force is the Co—
riolis inertial force, which arises as a consequence of
motion within a rotating coordinate system. It is cal—

culated using the formula " =-2m, (@, x,). If the

transmissive angular velocities are expressed using their
dual objects given with (20), the expression of relative
velocity (13) substituted and multiplied by a unit vector

¢ the considered expression will evaluateto zero:
(Fin ) (e} =—-2m [@)1(5,){e} =0 (34)

4.4 Differential equation of rectilinear motion of the
EVA’s armature

Differential equation of motion for the considered
vibratory system can be obtained if expressions from
previous subsections are substituted into (23). After
rearrangement, the mentioned equation can be written
down in the following form:

MG+ Bq +keg=—F,(0)+ Ly (p.0) + Qg (@,1), (35)
where:
Ly (p.t)=F) s()cosa + F , (t)sina
—myg g sin(a + @) (36)

@y (@,1) = —my (¥g cos(a + @) + Vg sin(a + p))

—my @Sk g sSina —ng o cosa)
N2 :
+my (@) (&g cosa +1 g sina +q) (37)

The right-hand side of the differential equation of
motion for the single-degree-of-freedom oscillator, gi—
ven with (35), represents the total excitation force acting
on the oscillatory system. Here, the electromagnetic
force of the vibratory actuator F,(¢)is the only cont-

rollable variable of the system. The remaining two
terms on the right-hand side cannot be explicitly
controlled during the operation of the vibratory actuator
under standard operating conditions of the vibratory
conveyor.

The term Lg(@,t) represents the influence of the

electromagnetic actuator’s working load. In addition to
the working load, which is, in the general case, a non-
deterministic quantity, the influence of gravitational
forces is also included in the case where the actuator is
not positioned horizontally (a0 # 0). Even if it is positi—
oned horizontally, the assumptions of rotation of the
actuator in the vertical plane (¢ # 0) brings gravitational
acceleration into the effect.

The consequence of motion within a non-inertial
coordinate system is captured by the scalar function
Dr(p,t). Put simply, when the vibratory actuator—i.e.
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the electromagnet—is embedded within a non-
stationary mechanical assembly, additional (fictitious)
forces arise that affect the actuator’s dynamics. In other
words, the governing law of the air gap variation is
altered due to the presence of the electromagnetic force.

4.5 EVA as an exciting element inside the vibratory
conveyor

The armature of the electromagnet is rigidly attached to
the massive base of the vibratory conveyor. Theore—
tically, point B, which represents the origin of the non-
inertial coordinate system, can be placed anywhere in
the absolute coordinate system Oxyz. Consequently, the
relative position vector of point K inside the local
coordinate system B¢p{ also changes, in accordance
with (12). Therefore, let point B be located at the center
of inertia of the massive base. Following the conc—
lusions from [20,31,33] the physical interpretation of
the symbolic quantities within (35) is as follows:

e The newly introduced generalized coordinate ¢(?),
which determines the relative displacement of the
electromagnet armature, actually represents the fo—
urth generalized coordinate of the considered sys—
tem in [20,33], and its directly proportional to the
size of the air gap inside the EVA.

e The variables Xzand Jjrepresent the orthogonal

components of the transmissive acceleration of the
center of inertia of the vibratory base. In this case,
they are identical to the second time derivatives of
the first two generalized coordinates from the afo—
rementioned references.

e As a consequence of the coincidence of point B
with the center of inertia of the massive base, the
rotation angle ¢ of the coordinate system B¢y
represents the rotation angle of the massive base
around its axis, i.e., the third generalized coordinate
from the aforementioned references. Consequently,
their derivatives are equivalent.

e The angle a defines the inclination of the elec—
tromagnetic vibratory actuator relative to the hori—
zontal plane. Since it is perpendicular to the leaf
composite springs, it is also the angle formed by the
springs with the vertical plane.

e The vector py ,defines the distance of point K
from the center of inertia of the base at the initial
moment. Its components &, and 7y , represent

the horizontal and vertical distances, respectively.
If the system is at rest at initial moment, absolute
and relative coordinate systems’ axes are parallel.
Hence, for the sake of simplicity, and one can write

Sko=Acand g =A .

e If the armature is connected to the electromagnet’s
core via a total of [, parallel composite springs,
each with stiffness £, :12% [31] and damping
coefficient f., the equivalent stiffness is £, =

EI . . . .
12/, — , and the equivalent damping coefficient is

C
Be = [p.. In previous expression E represents
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Young’s modulus of elasticity of the leaf spring; /
isan axial moment of inertia around the bending
axis and L, is the length of unclamped section of
the spring.

Considering the cumulative effect of the inertial
forces for the general case of relative motion of EVA,
that’s expressed with a scalar function given with (37),
there are several ways to further simplify the differential
equation of motion of the mechanical subsystem of the
EVA, given with (35).

4.6 The assessment of the inertial force that acts on
the EVA’s armature

At the first glance, it is evident that the term
X cos(a + @) + jp sin(a + @) originates from  the

translational acceleration of the center of inertia of the
vibratory base, i.e., point B. The other two terms in (37)
result from the rotation of the massive base around its
axis. In addition to the angular velocity and angular
acceleration, their magnitude is also influenced by the
relative position of the centers of inertia of the massive
base and the vibratory trough, as shown in Fig.5.

Agycosa+ Aysina + ¢
VK
A €
Ui K, q

>
>

§

Figure 5. Position of vibratory trough’s center of inertia
relative to base’s center of inertia

The transmissive centripetal component of the iner—
tial force (17“}’;’1’) , in addition to the square of the angular

velocity of the base, is largely defined by the term
(A cosa+A, sina + q), 1.e., the distance between the

centers of inertia of the trough and the base, projected
onto the direction of motion. It is evident that, besides
the relative displacement of point K, the centripetal
component is also influenced by the position of the
common center of inertia of all bodies rigidly attached
to the armature, expressed by the aforementioned sum,
which represents a constant value.

The transmissive component of inertial force ( q;”z )

is mostly influenced by the angular acceleration of the
vibratory base. It is multiplied by the length (Asina —
Aycosa) which represents the distance between points B
and K, perpendicular to the direction of displacement of
the vibratory trough. From Fig. 5, it can be observed
that this component is independent of the air gap’s size
and is determined solely by the geometry of the system.
This transmissive component of the inertial force can be
eliminated in two ways:
o If the base has no angular acceleration or it can be
neglected, i.e. ¢ =0, which further implies to ¢

30 = VOL. 54, No 1, 2026

~ 0, since it is meaningless to speak of uniform
rotational motion of a mechanical system such as a
vibratory conveyor.

e If the vector BK coincides with the direction of
motion of the electromagnet, defined by the unit

vector € . However, this problem should already

be addressed during the mechanical design of the
conveyor itself.

And finally, following previous consideration where

angular velocity can be neglected (¢ = 0) the Coriolis

force can be assumed zero, as well.
At the very least, by assuming that the electromagnet
is placed on a stationary, horizontal, and flat surface

(@9,0,0,a =0), eq. (35) reduces to:
MG+ P.q+kqg=—F,(t)+F () —mgXp, (38)

where the translational component of the transmissive
inertial force remains, arising from the horizontal disp—
lacement of the ferromagnetic core of the elect—
romagnet, i.e. x, = x, (7). To properly account for this

effect, one must either know the governing law of the
core’s displacement or introduce an additional diffe—
rential equation, together with the mass of the elec—
tromagnet core. Such actuators are referred to as two-
mass systems and are particularly suitable in appli—
cations where additional inertial forces are required,
such as for mixing, shaking, or detaching material from
the working element of a vibratory machine [18,29].

5. VALIDATION OF THE MATHEMATICAL MODEL

The differential equation describing the change of
electrical quantities in the EVA, given with (6), together
with the differential equation of the relative motion of
the electromagnet armature, given with (35), provide the
starting point for forming the mathematical model for
the considered case of the EVA.

The process of electromechanical energy conversion
can, to a certain extent, be modeled with satisfactory
accuracy by introducing specific assumptions and app—
roximations. For stable, low-intensity vibration regimes,
where the damping elements are sufficiently stiff and
the base mass is significantly larger than the mass of the
vibrating structure, the displacements of the iron core
are negligible compared to the displacements of the
armature. Under these conditions, the core can be
approximated as stationary, as done in [19,21].

On the other hand, modelling the influence of the
transported material presents a significant challenge. In
general, granular materials cannot be described by ana—
lytical expressions. Their behaviour must be modelled
using methods based on statistical mechanics and mate—
rial rheology [18], or by numerical and computational
approaches [34,35]. For the purposes of validating the
mathematical model of the EVA, the influence of the
transported material will be neglected. However, in sta—
ble vibration regimes, this influence can be indirectly
incorporated through a corrected damping coefficient,
as shown in [19,21].

With respect to the aforementioned approximations
and considerations (35) simplifies to the following form:
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mgG=—p,4+k,q—F,(t)-mggsina (39)

In this situation, together with the electrical subsystem
of the EVA, three fundamental forms of energy are
distinguished, which define the state of the observed
system:

o Elastic potential energy, which is being accumu—
lated by the deformation of leaf springs. It’s pro—
portional to the armature’s relative displacement
from the initial position.

e Kinetic energy of the whole moving subsystem,;
considering the approximations above, it can be
calculated using the relative velocity of the arma—
ture, considering that the overall mass of this
subsystem is equal to .

e Magnetic energy, that’s being predominantly
accumulated inside the air gap. It’s mostly effected
by the intensity of the electric current that flows
through coils.

5.1 Mathematical model for the considered EVA

For a successful formulation of the mathematical model,
it is necessary that the proposed system possesses as
many state variables as there are entities capable of
storing energy [17,36]. Considering that the observed
electromechanical system contains three elements
capable of storing energy, it is necessary to define three
state variables, that will describe the system’s state at
each moment:

1. Relative displacement: x(¢) = g(?);

2. Relative velocity of the armature: x,(¢) = v,(¢)

3. Electrical current in the coil: x3(¢) = i(?);
which require definition of three separate state equa—
tions. Given that v, (¢) = g(¢), the first state equation can

be formulated as follows:
dx,
—=x(t 40
& 2 (0) (40)

Following on, the second state equation can be
obtained if the expression for electromagnetic force
from (7)is substituted into (39)and state variables are
replaced:

dx
2 —ﬁxz -—2x
dt my my
N?4
- AT T3 mygsina (41)
4(Dy +x))

Final, third equation ought to define dynamics of the
electrical current that runs through the copper coils of
the EVA, hence forming the electromagnetic field
around it. For this purpose, eq. (6) can be rearranged as

follows:
di . dL
E:L |:ug(t)—l(R +Eﬂ (42)

which, after the substitutions for inductance and its first
derivative with their expressions from (4) and (5), and
swapping for aforementioned state variables, evaluates
to:
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D, 4
s _Doraf, 1 ANA R, | #3)
de - uyN“4 (Do +x;)

Furthermore, if the state vector and its first deri—
vative are introduced as:

dy  dv,  dyy

T
, (44
dt dt dtj “9

Xz(xl X, x3)T; X:(

the system of differential equation given with (40), (41)
and (43) can be also written in a compact form, which is
more suitable for computer, i.e. numeric computations:

X = A(X)+B(X)-U(), (45)
where:
X2
k N*4
AX) = —&x2 e _/‘o—zx32 -m gsina
m m 4Dy +x,) (46)
D N*4
0 +2x1 X3 Ho o5 -R
uN*4 (D, +x)
and
0
D,
B =" piy={ 0 (47)
HoN™A g ()

5.2 Description of the laboratory setup and
definition of model parameters

The proposed mathematical model of the electro—
magnetic vibration actuator was validated on a func—
tional prototype of a vibratory conveyor realized in the
Mechatronics laboratory of the Institute Mihajlo Pupin.
The prototype has a total mass of the vibrating trough of
myg = 0.83kg, while the initial air gap is Dy = 4.7 mm.
The vibrating base is rigidly fixed to a massive iron
ballast, minimizing its displacements and allowing it to
be considered stationary during the operation of the
EVA, as shown in Fig. 6.

Figure 6. The laboratory prototype of the considered
vibratory conveyor with an inductive sensor attached

The relative displacements of the vibrating trough
were measured using an inductive sensor Nil(0-18-LiU-
HI1141 manufactured by Turck. The placement of this
sensor is also shown in the Fig. 6. This sensor provides
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a linear output voltage in the range of 0.05-10V
corresponding to relative displacements from 0.5—4mm
More precisely, within the linear measurement range, a
unit change in voltage corresponds to an exact relative
displacement of 0.352mm.

To determine the dynamic characteristics of the
vibrating conveyor, an experimental study was con—
ducted involving pulse mechanical excitation of the
system. In this case, a short mechanical impulse was
introduced to the system in the direction of the relative
displacement of the armature of the electromagnetic
vibrating actuator, which induced a response in the form
of free damped oscillations. The response was measured
using the aforementioned inductive sensor, and the
analog signal was recorded with a high-resolution
digital oscilloscope (Fig. 7).

A Fast Fourier Transform (FFT) was applied to the
measurement data to examine the frequency com-—
ponents of the free damped oscillations of the vibratory
trough. The resulting natural frequency of the observed
system equals to f, = 55Hz which will be used as the
excitation frequency for both the numerical simulations
and the following laboratory tests.

Following on, the damping ratio of damped vib—
rations can be calculated using the logarithmic decre—
ment. Despite the fluctuations that occur as an effect of
AC/DC conversion of the input signal, the average
damping ratio was calculated to be &, =0.028. This

estimation can be considered as valid given that typical
viscous damping ratios for composite leaf springs take
value from 1% to 5% [37], [38].
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Figure 7. System’s response after a mechanical impulse

alongside the relative displacement of the EVA

For the oscillating mass of mx = 0.83kg and linear
frequency of f, = 55Hz, i.e. angular frequency w, = 2xf,
= 345.6 rad/s, the equivalent stiffness and damping of
the system equates to:

k, = @) -mg =99134.67N/m ~99135N/m  (48)

B, =2¢,\Jkymyg =15.91N/(ms) (49)

The schematic of power converter circuit supplying
the EVA coils is depicted in Fig.8. Measurements taken
at the EVA’s terminals showed the electromagnet’s
resistance and inductance to be R = 96Q and L, =
1.56H, respectively, where the index 0 indicates that the
measurements were taken at initial moment. While the
coil’s number of turns N and the effective cross-
sectional area of the air gap S could not be directly
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measured, their combined effect was inferred from their
combined influence, as follows:

2 _2DyLy _2-47mm-1.56H

AN 5
Ho 47-107"H/m

=11669.24m> (50)

A constant supply voltage of V, = 300V is applied.
The control unit includes two switches, S7 and S2, which
are driven by a pulse width modulation signal (PWM).
When both switches are closed, current intensity rises
through the coils due to the applied positive voltage.
After opening the switches, the magnetic energy stored in
the EVA coils is returned through the freewheeling
diodes DI and D2 in the power source V.

}
S \) D,

Dlt SQ\f

Figure 8. The schematic of power converter circuit for
supplying the EVA

The voltage applied to the EVA can be modelled as
follows [19]:

Ves  up=1
ug (1) =1-Vy, (up=0)A(i(1)>0) (51)
0, otherwise

where V, denotes the voltage source, and up is the
output of the PWM control function with frequency f,
and an adjustable preset duty cycle J, which determines
the width of the applied voltage pulse.

For enhanced clarity parameters that constitute the
mathematical model of EVA given with (45) are given
in Table 1.

Table 1. Parameter values used for numerical simulation

Parameter name Value
Oscillating mass 0.83kg
Equivalent damping coefficient S, 15.9IN(nvs)
Equivalent stiffness £, 99135N/m
Number of turns x cross section N4 11669.24m>
Initial length of the air gap Dy 4. 7mm
Resistance of the copper coil R 96Q)
Initial inductance of the copper coil L, 1.56H
Supply voltage V, 300V
Duty cycle 0 10%
Driving frequency f, S55Hz

Following on, the initial state of the system needs to
be defined as well. Due to the weight of the vibratory
trough and all components rigidly attached to it, the
value of the air gap at the initial moment is reduced by:

FME Transactions



do = _%Sm“ =-3,385-10"m, (52)

e

and given the fact that the armature starts from the state
of rest and that the initial electrical current is equal to
zero, the state vector at the initial moment takes
following value:

on(—3.385-10*5 0 o)T (53)

Both the numerical simulation and laboratory expe—
riment will be performed with lesser excitation magni—
tudes, i.e. the vibrations will be near the system’s equ—
ilibrium point. Although inductance varies drastically
with slight displacements, leaf springs’ stiffness can be
assumed constant for relatively small bending. For
larger bending angles, stiffness becomes nonlinear and
the trough deviates from a rectangular path, i.e., its
motion can’t be considered as rectilinear anymore [31].

Furthermore, given that the vibratory trough moves
rectilinearly, the inductive sensor measures the distance
to a surface that remains parallel to its tip, yielding valid
measurements.

6. NUMERICAL SIMULATION RESULTS

Figure 9 shows one impulse of the electrical current.
It depicts the dependence between electrical values in the
circuit from Fig. 8. Upon application of voltage to the
vibratory actuator terminals (R-L circuit), e;,;, ab—ruptly
rises to 300V then gradually decreases as the electrical
current increases, reaching 269.25V, which corresponds
precisely to the difference between the source voltage and
the Joule losses given by R at that instant.
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Current [A]
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Indieed voltaze [V]
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Figure 9. Changes in electrical current and induced voltage
during one period of the resonant vibratory regime

After control signal opens the switches, the current
starts decreasing, and the value of the induced voltage

.30

drops instantaneously to -330.3V, then gradually rises
until the electrical current drops to zero. After this
moment, there is no electrical current in the copper coil,
hence the induced voltage drops to zero. One period
lasts for exactly 36.36ms. After multiple consecutive
impulses, the armature starts the desired vibratory
motion. Figure 10 illustrates the process of reaching a
steady-state vibratory regime under excitation by an
impulse-shaped resonant frequency. The blue curve
represents the relative displacements of the EVA’s
armature ¢(¢), while the red curve corresponds to the
sequence of current pulses.
| 0.3
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Figure 10. The gradual rise of vibration amplitudes during
the initial phase of the resonant vibratory regime

During the initial phase, the vibration amplitudes
gradually increase because the energy input exceeds the
energy lost due to dissipative effects (viscous friction
and Joule heating). Since viscous damping is
proportional to the armature velocity, energy dissipation
grows as the velocity amplitude rises. Eventually, the
system reaches a stable vibratory regime in which
excitation and dissipation are balanced, and the
oscillations stabilize. For a given vibratory regime, the
oscillations stabilize at peak-to-peak values of 0.74mm.

The presented graph illustrates the essence of a
resonant vibratory regime - the system receives exactly the
amount of energy required to compensate for dissipative
losses. In this regime, current pulses occur as the armature
passes through the equilibrium position during the return
stroke. This phenomenon is even more clearly observed in
Fig. 11, where several oscillation periods are magnified. In
addition to current and displacement, the translational
velocity of the armature, ¢(¢), is shown in orange. It can

be observed that the electrical current peaks exactly when
the translational velocity of the armature attains its
maximum amplitude - occurring exactly at the moment the
armature passes through the equilibrium position.
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Figure 11. Displacement, velocity and electrical current during the transient phase of resonant vibratory regime
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For better comprehension of the electromagnetic
processes that occur inside the EVA, Fig. 12illustrates
the change of all significant electromagnetic quantities
during the observed resonant vibratory regime. The
simulated source voltage is shown in navy blue; it
should be noted that the actual source voltage does not
have negative halves, and the function u, represents
solely the result of the piecewise function given with
(51). At the moment when u, changes sign, the current
(red) reaches a maximum value of0.33A . The trian—
gular current pulse corresponds to the triangular pulse of
the magnetic flux @4, depicted in light blue, reaching a

maximum of 0.515T. As mentioned before, the first
derivative of the magnetic flux represents the induced
voltage at the electromagnet terminals e;,,, which shown
in green.

The remaining three terms that constitute the
induced EMF expression — the electromagnet induc—
tance, its first derivative, and the time derivative of the
current — are shown in olive green, purple, and pink,
respectively. It can be observed that the variation of the
inductance follows a sinusoidal pattern, inversely
proportional to the sinusoid of the armature relative
displacement. In other words, when the armature is
closest to the core, the inductance reaches its maximum,
as expected from(4). Moreover, the first derivative of
the inductance, according to(5), partially resembles the
shape of the armature relative velocity. Deviations from
the ideal sinusoidal shape are noticeable at the moments
of the current pulse, identical to those observed in the
relative velocity graph in Fig. 10.

7. EXPERIMENTAL VALIDATION

The validity of the proposed mathematical model was
tested using the previously described laboratory
prototype. The pulse frequency was set to f, = 55Hz
with a duty cycle of § = 10%. A screenshot from the
oscilloscope showing the vibratory regime, with a

Driving voltage Ug [V] Current [A]
300
( 0.32 -
Wl 0.24 -
0 0.16 -
-150 4 0.08 4
_3{)“ gl I I I ﬂlnﬂ 1 I I IL
Inductance L [H] dL/dt [H/s]
1.70 1 40 -
1.65 7 % 4
1.60
U -
1.55 4
20
1.50
40 <
]'45 2 ! I I I ! I
051 M52 0.53 0.51 0.52 053
Time [s] Time [s]

horizontal time scale of 5Sms per division, i.e. Sms/div.
The displacement signal from the inductive sensor is
presented in Fig. 13. In addition to the displacement
signal, the oscilloscope also monitored the electrical
current and voltage across the electromagnet.
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Figure 13. Current (yellow), voltage (blue) and the displace-
ment (purple) during the experimental resonant regime of
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The probe that measured the electrical current has a
transfer characteristic of 0.1A/10mV and was monitored
on channel CH1 with a vertical scale of 20mV/div. In
this configuration, the height of one division of the
current signal corresponds to 0.2A. The voltage probe,
on the other hand, has a 200:1 attenuation ratio. Since
the voltage was recorded on channel CH2 with a
vertical scale of 1V/div one oscilloscope division
corresponds to 200V of the measured signal.

The voltage signal from the inductive displacement
sensor was amplified, giving a scale of 10V/div.
Considering the sensor’s transfer ratio, this amounts to a
total sensor division of 0.352mm/div. The zero point in
Fig. 13 is set to clearly indicate the time intervals bet—
ween two switch closures, corresponding to consecutive
voltage jumps from 0 to 300V, which span slightly over
3.6 divisions, corresponding to 18.182 ms.
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Figure 12. Changes in significant electromagnetic quantities during the operation of the EVA
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For better clarity, Fig. 14 shows an enlarged view of
one oscillation period with a time scale of 2ms/div
where the peak of the electrical current pulse coincides
with the moment the armature passes through its equi—
librium position during the return stroke of the vibratory
trough. In the observed resonant regime shown in Fig.
14, the displacement signal oscillates over approxi—
mately 1.9 divisions, which correspondsto a working
stroke of 0.669mm and oscillation amplitudes of
approx. 0.345mm.

After the switching circuit closes, the voltage signal
rises for about 1.5div, which corresponds to 300V. At
this moment, the current also begins to increase with a
slightly exponential characteristic. As the current rises,
the voltage across the electromagnet decreases, consis—
tent with the expected Joule losses in the circuit. Alt—
hough the sampling rate during oscilloscope digitization
is not particularly high, it can be observed that the
voltage drops by approximately. 0.1div, i.e. roughly
20V. After 1.8ms, the switches open again, causing the
voltage to abruptly fall by exactly -600V, i.e.three
vertical divisions.Within this oscillation regime, the
triangular current pulse peaks at exactly 1.5 div,
corresponding to approximately 0.3A.
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Figure 14. The coincidence of current's peak values (yel-
low) and voltage (blue) switching moment with an equilib—
rium point of the vibratory trough (purple) during the reso—
nant vibratory regime
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7.1 Comparison between experimental and
simulation results

This subsection presents a brief discussion of the cor—
relation between simulated results and experimental
values. The oscilloscope readings that were shown in
Fig. 13 were exported in .csv format and post-proces—
sed. Given that Fig. 13 depicts a stable vibratory regime,
the simulation results were taken after the transient
period of 0.5s (as shown in Fig. 10). The corresponding
curves were manually aligned; hence, there is no
temporal axis enumeration in the following figures.

Figure 15 depicts the comparison between actual
(measured) and simulated displacement of the vibratory
trough. Measured displacement values oscillate between
-0.36mm and 0.31mm, while simulated values oscillate
in the range between -0.4lmm and 0.33mm. This
equates to a working stroke of 0.67mm and an estimated
one of 0.74mm.

Following this, the resemblance between the simu—
lated and actual induced voltages on the electromagnet is
shown in Fig. 16. Simulated impulses match the shape
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and width of the actual ones. The voltage drop due to
Joule heating is somewhat similar, even though the actual
voltage drop is lower when the polarity reverses, i.e.,
when the switches return to the open position.
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Figure 15. Comparison between measured (blue) and
simulated (dashed red) values of the trough’s displacement
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Figure 16. Comparison between measured (blue) and
simulated (dashed orange) values of induced voltage

When the voltage undergoes rapid changes during
the second half-cycle, i.e., when it assumes reverse
polarity, discrete shifts in voltage level are expected.
However, in the experimental measurements, a slight
curvature is observed as it returns to zero (Fig. 17). This
effect arises from the diodes' physical nonlinearity at
low voltages and can be disregarded.

Additionally, another notable characteristic can be
observed in Fig. 17: the induced voltage never drops to
zero between two impulses. It takes a positive value bet—
ween OV and 8V that can’t be determined precisely due
to the oscilloscope's measurement discretization during
the AC/DC conversion. This effect is also noticeable in
the moment the switches close, when the voltage
suddenly rises to 309V instead of the predicted 300V.
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Figure 17. Comparison between measured (blue) and
simulated (dashed orange) values of induced voltage

This effect could be considered just an error in the
measurement process, but its source lies deeper in the
electronics circuit of the EVA power supply. Given that
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there is a small constant voltage in the circuit, when the
switches are supposedly open, the current gradually
increases. This effect can’t be observed in oscilloscopic
screen captures (Fig. 13 and Fig. 14). Still, it is clearly
visible in the post-processed data of the readings of
electrical current, that’s given in Fig. 18. When the
current’s triangle impulse goes back to zero, the
intensity of the electrical current rises and takes a value
of 0.02A before the next triangle impulse starts. Even
though the measured and simulated impulses’ peaks
coincide,the triangles of actual current impulses peak at
0.305A while the simulated ones peak at 0.343A.
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Figure 18. Comparison between measured (blue) and
simulated (dashedorange) values of electrical current

Furthermore, a comparison between measured va—
lues and those obtained from numerical simulation is
presented in Table 2. The absolute and relative errors of
estimated values compared to values obtained with the
laboratory experiment.

Table 2. Comparison of the results of the numerical

simulation and the values obtained during the laboratory
experiment

. Estimated |Measured | Absolute | Relative
Physicalvalue
value value error error
Current™s |6 3434 | 0305A | 0.038A | 12.5%
peak
Working | 24vm | 0.67mm | 0.07mm | 10.5%
stroke

8. CONCLUSION AND DISCUSSION

This research focuses on electromechanical energy con—
version within an EVA during operation. Unlike
previous studies [19-21], that decouple electrical from
mechanical dynamics, the approach presented in this
paper accounts for their nonlinear interaction. Furt—
hermore, previous approaches often develop mathema—
tical models for the specific case of EVA, e.g., treating
it as a single-degree-of-freedom oscillator or neglecting
gravity. In contrast, the presented mathematical model
considers the general case, in which the size of the
electromagnet’s air gap is determined by the dynamics
of the electromagnet armature's relative motion.

This study models the EVA with three state vari—
ables: the armature's relative velocity and displa—cement,
and the electrical current flowing through the copper coil.
Several previous studies adopt a similar approach but
don’t treat the current as a state variable; instead, they
treat it as a control variable, i.e., an inde—pendently
controllable quantity. This approach demon-—strates the
interdependencies between the electrical current and the
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dynamic properties of the aramture, thereby proving that
the current can’t be considered a control quantity. Unlike
prior models, which often rely on various approxi—
mations, this approach considers variable inductance and
the resistance of the copper coil.

The proposed mathematical model was validated
with numerical simulation and a laboratory experiment
on a laboratory prototype of a vibratory conveyor. Du—
ring the experiment, the armature’s displacement,
electrical current, and induced voltage were measured
and compared with results from numerical simulation,
showing strong resemblance between the numerical
simulation and the actual vibratory regime.

However, slight discrepancies can be observed bet—
ween measured and estimated values, arising from the
nonlinearity of EVA’s power supply electronic circuit at
low voltage levels, as the experimental setup was desig—
ned for high-voltage levels used in industrial envi—
ronments. The comparison between the measured and
estimated values shows relative errors of 12.5% for peak
amplitudes of electrical current and 10.5% for the
working stroke.Several factors contribute to the overall
error metric: the experimental setup's poor performance at
low voltages and the approximation of a three-di—
mensional electromagnetic field as a scalar equation.
Magnetic flux fringing around the air gap was neglected,
resulting in lower inductance. For lower estimated
inductances, the current rises faster, hence the higher
peak amplitudes. Consequently, as the electromagnetic
force depends on the square of the current, higher exci—
tation forces will result in larger displacements.

Furthermore, numerical simulation results provide
insight into how various electrical quantities change du—
ring the observed vibratory regime (as shown in Fig. 12).
This opens new possibilities for advanced sensor—less
drive techniques that do not require an inductive sensor,
in which only inductance is measured and current pulses
are terminated accordingly. This concept represents a
potential direction for future research, as well as the
introduction of CAD/FEA tools for accurate three-
dimensional modelling of electromagnetic fields, thereby
incorporating magnetic flux fringing around the air gap.
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EJIEKTPOMEXAHWYKO MPETBAPAIGE
EHEPTHJE YHYTAP EJTEKTPOMATHETHOT
BUBPALIMOHOT AKTYATOPA:
MOJEJTAPAILE, CHAMYJIALINJA U
BAJIMJAIINJA

Y.Jb. Uauh, K.B. lecnoroBuh, M.II. JlazapeBuh,
E.A. Ber
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Y OokBHpPY paja ONUCAaH je pa3Boj M BajuJaluja
HEJIMHEeapHOT MaTeMaTHYKOI Mojena eJeKTpoMar—
HETHOT BHOPAIMOHOT aKTyaTopa, KOjU je 3aCTYIUbEH y
BUOpAaLMOHUM TpaHCIopTeprMa. MoTHBalMja 3a OBO
UCTpaXMBambE MPOMCTHYUE M3 MOTpede 3a JeTabHUjUM
pasymeBameM (peHOMEHa eNeKTPOMEXaHHYKOr MpeTBa—
pama eHepruje, KOoju ce JellaBa TOKOM eKCIUIoaTalyje
JjEITHOT eNeKTOPMArHETHOT BHOPALOHOT aKkTyaTropa. 3a
pa3nIHKy O NOCAIAIIHMX MaTeMaTHYKHX Mojela, KOju
yecTo OMBajy MomenupaHd moMohy JTMHEapHHX ampoK—
CHUMaldja WINM 3aceOHMM pa3MaTpameM MeXaHUKe H
eNEeKTPOJMHAMUKE aKTyaTopa, NPEeUIOKEHH MO UMa
3a Wb HHTETPAllljy HEIMHEapHUX eNeKTPOMarHeHuX
eekara ca AMHAMUKOM pEJIATHBHOI KpETama KOTBE
€JIEKTPOMAarHera, TaKO YCIIOCTaBJbajyhn 3aBHCHOCT
u3Mel)y eNeKTpUYHHMX BETMYHHA y CTPYJHOM KOIy |
JUHAMHYKHX KAapaKTEePUCTHKA IIOKPETHOT elIeMEHTa
enekrpoMarHera. HoBoJgoOWjeHH MaTeMaTHYKH MOAEN
je cuMynupaH nmoMohy HyMEpHYKHX CHMYJalyja, IpH
4eMy cy HmapaMeTpy MOZeNa y3eTH N0 y30py Ha (yHK—
OUOHANHU J1Ia0opaTopHjcKu MpoToTUM. Ha kpajy je
OlMCaHa W EKCHEpUMEHTANHA BalMAallfja, Koja TOKa—
3yje 3HauajHoO cllarame ca CUMYJIAIIMOHUM Pe3yJITaTuMa.
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