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1. INTRODUCTION

Development of an Educational
Robotic Platform with Dual Control
Interfaces and Intelligent Computer
Vision-Based Interaction

This paper presents the development of a low-cost, Al-enabled educational
robotic platform designed to enhance hands-on STEM learning. The
system consists of a 4-degree-of-freedom (DOF) robotic arm constructed
from 3D-printed components, controlled by an ESP32-based circuit and
integrated with both local and web-based interfaces for flexible operation.
Two control interfaces were developed: a local desktop GUI built with
PyQt5 and a remote web-based interface using the MOTT protocol. Both
interfaces allow users to manually control robot joint angles, adjust
movement step sizes, reset to default positions, and monitor real-time joint
states. These interfaces provide intuitive interaction, enabling students to
understand motion control in robotics. To integrate artificial intelligence
and computer vision, three modules were implemented: face tracking, hand
gesture control, and object detection. Face tracking translates facial
position and size into 3D coordinates for real-time robot movement using
inverse kinematics. Hand gesture recognition uses MediaPipe to interpret
finger poses and execute corresponding robot actions. The object detection
module employs a YOLOvI2 model trained on classroom objects (pens,
erasers, markers) to perform autonomous pick-and-place tasks on a
simulated conveyor system. Experimental results validate the system’s
effectiveness in real-time tracking, gesture interpretation, and object
manipulation. Real-time plots of joint angles and workspace coordinates
illustrate the system’s responsive behavior. This integrated platform
enables students to explore Al vision, and robotics in a unified
environment. Through interactive exercises, they gain practical experience
in programming, Al model development, user interface design, and robotic
control, bridging theoretical knowledge and real-world applications.

Keywords: Educational Robotics; STEM Education, Robotic Arm;
Artificial Intelligence; IoT.

approaches significantly enhance the retention of know—
ledge and the development of technical competencies,

STEM (Science, Technology, Engineering, and Mathe—
matics)education has emerged as a critical pillar in
preparing future generations for the demands of an
increasingly technology-driven world. By emphasizing
the integration of Science, Technology, Engineering,
and Mathematics, STEM curricula aim to cultivate
problem-solving abilities, computational thinking,
design creativity, and interdisciplinary collaboration
among students [1-3]. The growing complexity of mo—
dern engineering and automation systems underscores
the need for students to engage with real-world tools
and scenarios from an early stage. Numerous studies
have demonstrated that active, project-based learning
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making STEM education an essential component of
national and global educational strategies [4-5]. As the
Fourth Industrial Revolution unfolds, competencies in
fields such as artificial intelligence (Al), computer vi—
sion, and the Internet of Things (IoT) have become
indispensable across industries [6-7]. Consequently,
there is a growing need to modernize STEM education
by integrating these cutting-edge technologies into
hands-on, project-based learning environments that fos—
ter both technical knowledge and system-level thinking.

Robotics has proven to be one of the most powerful
tools for implementing STEM education in practice.
Through robotics, learners can gain hands-on experi—
ence in mechanical design, electronics, programming,
sensor integration, and system-level thinking. The
interactive and visual nature of robotic systems not only
makes abstract engineering concepts more accessible
but also increases student engagement, particularly in
K-12 and early undergraduate education. Robotic sys—
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tems offer learners the opportunity to design, build, test,
and refine solutions to real-world challenges, while
developing essential 21st-century skills such as
teamwork, innovation, and resilience.

Over the past decade, a wide range of educational
robotic platforms have been developed and deployed
with the aim of supporting STEM education. These
systems not only promote hands-on learning but also
bridge theoretical knowledge with practical applications
through interdisciplinary activities. In [8], Mondada et
al. presented R2T2, a cross-continental collaborative
robotic event engaging over 100 students from Europe
and Africa in a space rescue scenario using real-time
video streaming and remote programming. This initi—
ative emphasized pedagogical outcomes over compe—
tition, highlighting inclusion and the adoption of en—
hanced methodologies among African participants. In
[9], Zeng et al. developed iArm, a 6-DOF robotic arm
kit with vision and conveyor modules, aiming to en—
hance students' computational thinking through a
semester-long program. Their study showed notable
improvements in students’ abilities, demonstrating the
educational impact of structured robotics curricula.
Robotic platforms have also proven effective for special
education. For instance, Bargagna et al. in [10] adapted
educational robotics for children with Down syndrome,
showing how the Bee-Bot robot can support cognitive
and social development in inclusive settings.

Mobile robotics has gained attention for its acces—
sibility and versatility. In [11], Nguyen et al. integrated
a RockChip Al processor with voice recognition (Viet—
namese, English, Korean) into a mobile robot controlled
via Android, enabling multilingual STEM learning
through natural interaction. Similarly, Haruna et al. in
[12] developed a mobile robot for teaching material
handling in mechanical workshops, demonstrating
improved learning outcomes through quasi-experi—
mental evaluation. Expanding affordability and custo—
mization, Pedre et al. introduced ExaBot [13], a multi-
purpose, open-source mobile robot that is more than ten
times less expensive than commercial platforms, serving
both research and outreach purposes. Desktop manipu—
lators also gained traction, with Vega and Pérez [14]
proposing G-ARM, a low-cost, ROS2-integrated robotic
arm validated in university courses for motion planning
and simulation.

Several studies focus on lowering the cost barrier
while maintaining functionality. In [15], Eaton and
Tanveer designed a cost-effective ROS-based robotic
arm for instructional labs, offering insights into compo—
nent selection and enabling broader student partici—
pation. Cehovin Zajc et al. [16] presented a low-weight,
open-source robotic platform that was validated across
different age groups and academic levels, confirming its
motivational and cognitive benefits. Meanwhile,
Chavdarov et al. [17] proposed a 3D-printed Delta robot
for educational purposes, emphasizing ease of manufac—
turing, geometric kinematics, and trajectory accuracy.

More recently, integrating Al and IoT into educa—
tional robotic platforms has opened new opportunities to
enhance student engagement and expose learners to
intelligent and connected systems — capabilities that
are becoming increasingly essential in smart manufac—
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turing, service robotics, and cyber-physical systems.
While existing robotic educational platforms provide
meaningful engagement in mechanics and control
systems, most are limited in their integration of emer—
ging technologies such as artificial intelligence (Al),
computer vision, and the Internet of Things (IoT). These
technologies are not only transforming modern industry
but are also becoming increasingly relevant in educati—
onal contexts, enabling students to explore intelligent
automation, human-robot interaction, and cloud-based
control systems.

Most available educational robotic arms typically
support only basic kinematic control and rely on scrip—
ted motions or button-based interfaces. Although some
systems allow for sensor integration or mobile app
control, they rarely incorporate advanced features like
deep learning-based object recognition, vision-guided
manipulation, or real-time remote interaction through
IoT protocols. As a result, they fail to provide students
with a holistic understanding of modern intelligent ro—
botic systems.

Several recent efforts have attempted to bridge this
gap. For example, Vega and Cafas [18] introduced
PiBot, an open, low-cost mobile robot built on Rasp—
berry Pi, featuring an onboard camera and a Python-
based software infrastructure. While it enhances visual
learning through onboard vision, its application is
limited to basic perception and does not yet incorporate
Al or IoT functionality. Similarly, Zheng [19] proposed
a robot interaction system utilizing computer vision and
deep machine learning to support English cultural
education; however, the application is domain-specific
and not oriented toward general robotics control or
STEM-focused platforms. In another study, Antonio et
al. [20] presented a mechatronics training system that
utilizes computer vision for 2D positioning of LEGO
mobile robots. Although effective in teaching funda—
mental robotics concepts, the system lacks integration
with Al-based perception or remote connectivity. In
[21], Mamatnabiyev et al. proposed FOSSBot, an open-
source robot designed to support a wide range of com—
puter science courses in tertiary education. A major
strength of this platform lies in its broad applicability,
as it is equipped with IoT technologies for sensing and
control, and supports courses in Al, computer vision,
electronics, and networking. Its open hardware/software
architecture allows deep customization and curriculum
alignment. However, despite its flexibility, FOSSBot is
primarily targeted at software-level educational
activities and lacks physical manipulation capabilities,
such as robotic arms or grippers, which limits its
applicability in teaching mechanical design or control—
ling articulated robots. Manzoor et al. [22] developed a
6-DOF articulated robotic arm equipped with an
onboard camera and force sensor at the end effector,
enabling autonomous object manipulation and advanced
control experiments. This platform is particularly strong
in supporting education in mechanical engineering,
robotics, and control systems, with applications ranging
from grasping to trajectory planning. Moreover, its
open-source nature and rich sensory feedback allow
both beginners and advanced users to explore a wide
spectrum of robotics applications. Nevertheless, while
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the system supports basic perception through vision, it
does not natively integrate modern Al-based object
recognition or loT-based remote access, which limits its
alignment with current trends in intelligent robotics.

Educational robots that integrate advanced features
—such as Al-enhanced vision modules or IoT connec—
tivity—are often prohibitively expensive or difficult to
customize because of closed hardware/ software eco—
systems. This situation creates a critical gap in STEM
education: there is still a lack of affordable, open, and
extensible robotic platforms that simultane—ously
support mechanical design learning, embedded control,
Al-driven perception, and loT-based communi—cation
within a unified framework.

To address this gap, this paper presents a novel, low-
cost, and fully integrated 4-DOF educational robotic
arm platform intended for hands-on STEM and mecha—
tronics training. The proposed system consists of four
tightly coupled subsystems: (i) a servo-driven robotic
manipulator with a gripper, (ii) an ESP32-based embed-—
ded control unit enabling 12C communication for multi-
channel PWM generation, (iii) dual control interfaces
that support both local operation (desktop PyQt5 GUI)
and remote access (web/loT-based control), and (iv) an
Al-powered computer vision module (YOLO-based) for
object detection and vision-based interaction.

The platform provides a reproducible reference de—
sign that can be directly deployed in teaching labora—
tories to support experiments in robot kinematics,
actuator control, embedded programming, sensor/
communication integration, and Al-based perception.
By combining low-cost hardware with an open and
modular architecture, the system can be easily custo—
mized for different curricula and extended with addi—
tional sensors or algorithms, thereby lowering the entry
barrier for institutions and enabling scalable, practice-
oriented robotics education.

The remainder of this paper is organized as follows.
Section 2 presents an overview of the overall system
architecture and its key components. Section 3 details
the design of the robotic arm system, including mecha—
nical construction, control circuitry, human—machine
interface, and kinematic modeling. Section 4 focuses on
the integration of artificial intelligence and computer
vision, highlighting applications such as face tracking,
hand gesture recognition, and object detection for pick-
and-place tasks. Section 5 presents and discusses the
experimental results, demonstrating the educational po—
tential and technical performance of the system. Finally,
Section 6 concludes the paper and outlines future
directions for enhancement and classroom deployment.

2. SYSTEM ARCHITECTURE

The proposed robotic arm platform is designed as a
comprehensive educational tool that integrates mecha—
nical design, embedded electronics, IoT connectivity,
and artificial intelligence to support hands-on STEM
learning. The system is composed of four tightly integ—
rated subsystems: the mechanical structure, the elect—
ronic control unit, the user interfaces (both local and
remote), and the Al-powered computer vision module.
Figure 1 illustrates the overall system architecture.
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Figure 1. System architecture of the robotic arm platform
for STEM education, integrating Al-based vision, loT
communication, and multimodal control interfaces

At the core of the system lies a 4-DOF robotic arm,
which is actuated using multiple MG996R servo mo—
tors. The robot is designed using Autodesk Inventor and
fabricated with 3D-printed components, enabling cost-
effective manufacturing and easy maintenance. The
end-effector is a servo-actuated gripper, capable of per—
forming basic manipulation tasks such as object
grasping and placement.

The control unit is built around the ESP32 micro—
controller, which provides both computation and wire—
less connectivity. A PCA9685 PWM driver is used to
generate the PWM signals required to control up to 16
servo motors, communicating with the ESP32 via the
12C protocol. The entire circuitry is custom-designed
and documented using Altium Designer, ensuring
reliable operation and reproducibility for educational
deployments.

To interact with the robotic arm, two types of
control interfaces are provided:

e A desktop application built with PyQt5, allo—
wing users to control each joint of the robot locally and
visualize joint angles in real-time.

e A web-based control interface developed using
the Blynk IoT platform, which enables users to remotely
operate the robot through a smartphone or tablet, illus—
trating key concepts in IoT and remote robotics.

Additionally, the platform is enhanced with an Al
and computer vision module. A camera mounted on or
near the robot captures real-time video, which is then
processed using pre-trained and custom-trained deep
learning models, YOLOv12 for object detection. The
system also supports gesture-based control and human-
robot interaction by leveraging models capable of hand
tracking and face detection, empowering students to
explore applications of Al in robotics.

This robotic platform is purposefully designed to
serve as a multidisciplinary learning tool, supporting a
wide range of topics including mechanical design,
electronic circuit development, embedded systems
programming, [oT communication, Al model deploy—
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ment, and computer vision applications. It provides
students with an integrated environment that allows
them to practice both theoretical and practical aspects of
STEM disciplines in a hands-on and engaging manner.

3. DESIGN OF THE ROBOT ARM SYSTEM

3.1 Mechanical design

Figure 2 illustrates the complete mechanical structure of
the robotic platform, which consists of a low-cost, 3D-
printed, 4-degree-of-freedom (DOF) manipulator integ—
rated with a conveyor belt system. Designed primarily
for educational and research purposes, the platform de—
monstrates practical applications of robotics, automa—
tion, and intelligent systems. The manipulator is
equipped with a servo-actuated gripper at the end-
effector, enabling autonomous grasping and arrange—
ment of objects transported by the conveyor. The
system is designed to be compatible with Al and com—
puter vision modules, allowing for the implementation
of object detection, tracking, and intelligent manipu—
lation tasks in real-world scenarios.

Figure 3. The manipulator design using Autodesk Inventor

Figure 3 illustrates the 3D design of the robot arm
modeled in Autodesk Inventor. The robot arm features
4-DOF, with each joint actuated by an MG996R servo
motor, offering precise motion control at an affordable
cost, making it suitable for educational applications.
The specifications of the servo motors are provided in
Table 1. Since each servo delivers a relatively low tor—
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que of 11 kg-cm, the 2nd, 3rd, and 4th joints are equip—
ped with dual motors to ensure sufficient torque for
rotating the corresponding links.

The robotic manipulator possesses 4 DOF. The first
joint enables rotation about the vertical (Z) axis, while
the remaining joints provide motion around horizontal
axes. Although each MG996R servo motor is capable of
rotating up to 180 degrees, the actual range of motion at
each joint is constrained by the mechanical structure of
the system. The specific angular limits for each joint are
summarized in Table 2.

Table 1. Specifications of the MG996R

Specification

Value

Nominal voltage

4.8 to 6V

Speed

4.8V: 0.19s/60-degree rotation
6.0V: 0.15s/60-degree rotation

Current draw

10mA idling
170mA operating without a load
1400mA at stall

Stall torque

4.8V: 9.4kg/cm
6.0V: 11kg/cm

Dimensions

40.7x19.7x42 .9mm

Table 2. Joint Rotation Ranges of the 4-DOF Robotic

Manipulator

Joint

Range

The first joint

0 to 180 degrees

The second joint

20 to 150 degrees

The third joint -60 to 60 degrees
The fourth joint -90 to 90 degrees
The gripper 0 to 9 degrees

As shown in Figure 4, the base of the manipulator
consists of a rotating platform and a servo mounting
bracket. A centrally mounted servo motor provides
rotation around the vertical (Z) axis, enabling the first
degree of freedom. To support the lifting of the arm
structure, two additional servo motors are symmetrically
mounted on either side of the base. These servos operate
in parallel to actuate the second joint, thereby increasing
the available torque and ensuring stable motion of the
upper links.

Figure 4. The Base of the Manipulator

As illustrated in Figure 5, the first link serves as the
intermediary component connecting the second and
third degrees of freedom. The lower mounting holes are
designed to interface with the actuators of the second
joint, while the upper holes connect to the third joint’s
actuators. The link consists of two S-shaped plates, each
5 mm thick. When assembled, the component measures
180 mm in length and 60 mm in width.

The second link incorporates a servo mounting
structure that is nearly identical to the first link’s design,
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except for an additional 5 mm in width when assem—
bled. This component mounts four servo motors: two
are aligned with the upper mounting holes of the first
link to actuate the third degree of freedom, while the
remaining two drive the end-effector, enabling the
fourth degree of freedom (see Fig. 6).

Figure 5. Structural Design of the First Link in the Robotic
Manipulator

Figure 6. Servo Mounting Configuration for the Third and
Fourth Degrees of Freedom

The end effector, as shown in Figure 7, is a 3D-
printed component designed to achieve cost-effecti—
veness and facilitate easy replication. It consists of two
plates with mounting holes that connect to the pair of
servo motors responsible for actuating the fourth joint.
An additional servo motor is integrated to control the
fifth degree of freedom, which drives a two-finger
gripper mechanism used for object manipulation

Figure. 7. The end effector
3.2 Control circuit design

Figure 8 illustrates the overall architecture of the control
circuit for the robotic platform. The system integrates
key electronic components, including an ESP32 micro—
controller, a PCA9685 16-channel PWM driver, a relay
module, a 12V power supply, and a 5V voltage regu—
lator module. Each component is functionally assigned
to ensure the reliable and coordinated operation of the
robotic manipulator and the conveyor system.

The ESP32 acts as the central processing unit of the
control system. It is responsible for communicating with
the user interface—either through a local PC connection
or a cloud-based web interface—allowing real-time
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wireless control and monitoring. Upon receiving control
commands, the ESP32 transmits the corresponding
PWM control signals via the I?*C protocol to the
PCA9685 module, which precisely regulates the rota—
tion angles of the eight servo motors responsible for
actuating the five degrees of freedom of the robotic arm.
These include dual-servo configurations at certain joints
to ensure sufficient torque.

9 RO

12V DC motor

I’C

2 jusi o oawe v 0
S 3

) ;E—B‘ ISOVANSOONS 5|
MG996R servo motors

Relay module

PCA9685

ESES2 module

microcontroller

Figure 8. The overall architecture of the control circuit

The PCA9685 module is a 16-channel, 12-bit PWM
driver that communicates with the ESP32 using the 1>°C
protocol, allowing for the simultaneous control of up to
16 servo motors using only two GPIO pins. In this
system, it controls eight MG996R servo motors for the
4-DOF robotic arm. The module operates at 5V and
supports PWM frequencies from 24 Hz to 1526 Hz,
with a 12-bit resolution (4096 steps), ensuring smooth
and accurate servo movement. An external power input
enables the module to supply sufficient current to all
connected servos, enhancing stability and reducing load
on the ESP32.

In parallel, the ESP32 also outputs a digital control
signal to a 5V relay module, which in turn switches a
12V DC motor responsible for driving the conveyor
belt. This indirect control via relay ensures isolation
between the logic and power circuits, improving both
safety and durability.

Power for the system is supplied by a 12V, 5A
adapter with a 220V AC input, providing sufficient
current for both the servos and the conveyor motor. A
DC-DC converter module is employed to step down the
12V supply to 5V, which powers the PCA9685 and
other low-voltage peripherals.

3.3 Control Interface Design

To enable flexible and user-friendly interaction with the
robotic platform, two control interfaces were developed:
one for local control via USB connection to a computer,
and another for remote control over the Internet. Both
interfaces are designed to send control commands to the
ESP32 microcontroller, which interprets the input and
actuates the corresponding joints of the robot. The local
interface is implemented as a desktop application for
direct, real-time control during development and testing,
while the web-based interface allows users to operate the
system remotely using mobile or cloud-connected devices.
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A desktop-based control interface was developed to
enable real-time and intuitive manipulation of the robot
arm. As illustrated in Figure 8, the interface was
designed using Qt Designer and implemented in Python
using the PyQt5 library. It provides individual control
panels for each joint, including the base, shoulder,
elbow, forearm, wrist, and gripper.

Each panel features a slider that enables users to
quickly adjust the corresponding joint to any desired
position. Radio buttons are provided to select the step
size (C1-CS5), which determines the number of degrees
the joint angle changes when the Increase or Decrease
buttons are pressed. Smaller step values are used for
fine adjustments, while larger steps enable faster move—
ments. A Reset button is included to return the robot to
its default home position, with joint angles preset to [0°,
90°, 90°, 0°, 0°].

istjoint |2ndjoint  3rdjoint  4thjoint | Sthjoint  Gthjoint Reset ™

1stjoint| ©o3 Oos O1 O2 O3 G5
2nd joint 03 004 O1 O2 03 OB
3rd joint 03 Qo4 O1 Oz 03 Os
4thijoint | O oz Oos O1 Oz O3 Os
S5th joint 03 Ood O1 Oz 03 05

Bthioint| O03 Cos O1 O2 O3 Os

1@ <] =]
J1@] =
@] =
1Als] =[]
J1@=] =——[-]
H Rl

Figure 9. Desktop-Based Graphical User Interface for
Robotic Arm Control

Additionally, each joint panel includes a label
displaying the current angle in real-time, allowing the
user to monitor joint positions throughout operation.
This interface offers a flexible and user-friendly envi—
ronment for both precise joint tuning and rapid pose
adjustment, making it particularly effective for educa—
tional demonstrations and development tasks.

In addition to the desktop application, a web-based
control interface was developed to enable remote opera—
tion of the robotic system over the Internet. As shown in
Figure 9, this interface replicates the functionality of the
local GUI, including joint-specific sliders, current angle
displays, step adjustment options (via radio buttons),
and reset functions.

PR ictus: waiting for command

1st joint 2nd joint 3rd joint
90.0 90.0 90.0

Figure 10. Web-Based Control Interface Using MQTT
Protocol for Remote Robot Operation
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The web interface communicates with the ESP32
microcontroller using the MQTT (Message Queuing
Telemetry Transport) protocol, a lightweight and well-
suited protocol for real-time IoT applications. Com—
mands issued from the web interface, such as adjusting
joint angles or initiating a reset, are published as MQTT
messages and received by the ESP32, which then
performs the corresponding control actions.

This web-based interface provides the flexibility to
remotely control the robot from any device with Internet
access, making it particularly useful for educational de—
monstrations, distributed learning environments, or
applications where physical proximity to the robot is not
feasible.

3.4 Robot arm kinematics

The robotic arm features a 4-DOF configuration for
spatial positioning and an additional DOF for end-
effector actuation. Figure 11 presents the kinematic
structure of the robotic arm, including the joint angles
6y, 01, 0,, 65, link lengths /,, [, 3, and the vertical offset
(d) from the base. To control the robot in Cartesian
space, both forward and inverse kinematics are formu—
lated to compute the mapping between joint angles and
end-effector coordinates.

ZZ 93
l
11 N 92
|
7
A | 7 0,
d
o
X
0 -

Figure11. Kinematic diagram of the robotic arm

The position of the end-effector (x, y, z) in the world
coordinate frame can be expressed as a function of the
joint angles (6, 6, 65, 65) and the link lengths [y, L, L,
as follows:

X = (llcl +12012 +l30123 )CO

v =(hey +hep +5¢123) 50 o
z= 11S1 +12312 +13S123 +d
6 = Hl + 02 + 03

where, ¢y = cosby, 5o = sinfy, ¢; = cosb;, s; = sinb,, ¢, =
COS(@] + 92), NV sin(91 + 92) , C123 = COS(@] + 92 + 93),
S123 = sin(f, + 6, + 0;), 9, represents the base rotation,
while 6,, 6,, 65 correspond to the vertical plane joint
angles.

Given a target position (x, y, z), the joint angles can be
computed by solving the inverse kinematics as follows:

First, compute the base rotation angle:

6y = atan 2(y.x) 2)
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Sum the squares of the two sides of Equation (1):

[y cos 6 +1 cos(6; +6, ) = \x* +* — I3 cos & 3)

Lysin@ +lysin(6 +6,)=z—d —I;cos

Denote m = /x> +y2 —l3cos0, n =z —d— lscos0.
Sum of the squares of the two sides of the Equation (3):

12 +13 +241, cos 6y = m? +n? (4)
So we can solve 6,:
m? +n? —112 —122

cosb, = 17
12

(6))

Denote k; = (I} + [cos8,), ky = Lsinéd,. Transform
Equation (3) to get:

kycos@ —kysins @ =m

. (6)
kysin@ +kycost =n
Solve for 6;:
6 =atan2(m,n)—atan2(ky,ky) (7

Finally, determine 65:
0;=6-6,-0, ®)

This inverse kinematics formulation enables the
robot to compute the necessary joint angles to reach a
desired target position, which is essential for executing
robot control.

4. Al AND COMPUTER VISION SYSTEM
4.1 Face tracking and hand gesture control

To enhance the intuitiveness and interactivity of the
robotic platform, a control mechanism based on facial
tracking and hand gesture recognition was implemented
using Al-based computer vision techniques. This app—
roach enables users to operate the robot without requi—
ring physical interfaces, making the system particularly
suitable for educational environments and human-robot
interaction research.

Figure 12. Face detection using the MediaPipe Face
Detection model

FME Transactions

The face tracking system, as illustrated in Figure 12,
employs the MediaPipe Face Detection model [23],
which performs real-time localization of the user’s face
using a lightweight convolutional neural network. Once a
face is detected, the algorithm provides a bounding box
from which the center coordinates (u, v) and the area s of
the face are computed. Specifically, (u, v) denote the
pixel coordinates of the bounding-box centroid in the
image plane, where u and v correspond to the horizontal
(x-axis) and vertical (y-axis) directions, respectively. The
face area s is defined as the bounding-box area in pixels,
calculated as s = height x width (in pixels®).

These parameters are then mapped to the robot's
spatial coordinates (X, Y, Z) based on the following
transformation equations:

w
Y =(M—Ejky

Z=—(V—§jkz+ll+d ©)
X = Skx +12

where w and & are the width and height of the video
frame, and k,, k, and k. are scaling factors that adjust the
sensitivity and fit the robot's workspace. This mapping
enables the robot to track the user’s facial position in
three dimensions (horizontally, vertically, and in depth)
based on simple head movements and the distance from
the camera.

To recognize hand gestures, the system utilizes
MediaPipe Hands[24-25], a deep learning-based model
that detects and tracks 21 key landmarks on the human
hand in real-time. These landmarks represent anato—
mical features such as finger tips, joints, and the wrist,
enabling the system to analyze the spatial configuration
of the hand with high precision, as shown in Figure 13.

Figure 13. Hand gestures detection with 21 landmarks

The detection of gesture states is based on two key
aspects: (1) the number of extended fingers, determined
by comparing the position of each fingertip to its
corresponding joint. (2) The orientation of the palm,
inferred from the relative positions of key landmarks
(e.g., wrist vs. fingertips), to determine whether the
palm is facing up or down.

To determine which fingers are extended, the system
compares the vertical (Y-axis) coordinates of each
fingertip to the joint two levels below it:
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o If the Y-coordinate of the fingertip is smaller
(i.e., higher in the image frame) than the joint
below it, the finger is considered extended.

o Otherwise, it is classified as folded.

For the thumb, which is oriented laterally, the X-axis
is used instead:

e On the right hand, the thumb is extended if the
tip is to the left of its joint.

e On the left hand, the thumb is extended if the tip
is to the right of its joint.

Once the system identifies which fingers are exten—
ded, it counts the number of raised fingers and evaluates
the overall hand configuration. The gesture classifi—
cation rules are then applied as follows (see Figure 14):

Raising one finger with the palm facing up or down
to increase or decrease the robot’s X-coordinate, res—
pectively.

Raising two fingers (index and middle) with the
palm facing up/down to control the Y-coordinate.

Raising three fingers (index, middle, and ring) with
the palm facing up/down to adjust the Z-coordinate.

A fully open palm is interpreted as a command to open
the gripper, while a closed fist is used to close the gripper.

Increase the X coordinate Decrease the X coordinate

Increase the Y coordinate Decrease the Y coordinate

Increase the Z coordinate Decrease the Z coordinate

Open gripper

Close gripper

Figure 14. The gesture classification rules

This multimodal control strategy enables manipu—
lation of the robot’s position and end-effector in a
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contactless manner. The combination of facial and hand
gesture inputs provides both gross and fine control
capabilities, enhancing the user experience and demon—
strating the potential of Al-driven human-robot inter—
action.

4.2 Object Detection for Robot Pick-and-Place
Applications

To enable autonomous pick-and-place functionality, an
object detection system was integrated into the robotic
platform. The goal is to allow the robot to recognize and
manipulate commonly used classroom items such as
pencils,markers, and erasers (see Figure 15). These
objects are typically small, lightweight, and varied in
shape and color—posing a moderate challenge for vi—
sion-based systems in real-world conditions.

Figure 15. Objects in the dataset

To address this, we trained a custom object detection
model based on YOLOVI12, a state-of-the-art deep lear—
ning architecture known for its balance between
detection accuracy and inference speed [26]. The trai—
ning dataset was collected specifically for this appli—
cation, comprising approximately 200 images per object
class. Images were captured under different lighting
conditions and backgrounds to improve the model’s
generalization capability. The annotation process was
carried out using the Roboflow platform [27], which
provided a streamlined workflow for labeling and data—
set augmentation.

Model training was conducted on Google Colab
using GPU acceleration. The training process involved
multiple epochs with early stopping and validation
monitoring to prevent overfitting. Upon achieving
satisfactory accuracy and loss convergence, the trained
model was exported to the deployment format
compatible with the robot’s control system.

During real-time operation, the YOLOv12 model is
executed on a local computing unit connected to the
vision system. Once an object is detected, the bounding
box coordinates are extracted and processed to compute
the object's position relative to the camera. This 2D
information is then mapped to the robot's workspace
through a calibrated transformation, allowing the system
to calculate the corresponding joint angles required to
reach the object. These angles are subsequently sent to
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the servo controller, enabling the robotic arm to execute
the pick-and-place task.

The primary purpose of this application is to provide
students with practical experience in applying artificial
intelligence to real-world robotics problems. Through
this task, students learn how to collect and annotate
image data, train and evaluate object detection models,
and deploy them within a functioning robot system.
Furthermore, they gain insight into how vision-based
outputs are converted into spatial positions and then into
joint angle commands to control the robot. This hands-
on activity helps bridge the gap between theoretical
concepts and real-world applications, fostering inter—
disciplinary skills in Al, computer vision, control engi—
neering, and automation.

5. RESULTS AND DISCUSSIONS

The robotic arm was fabricated using 3D printing
technology, enabling the creation of low-cost, modular,
and easily replicable components. After printing, all
joints and links were manually assembled into a comp—
lete manipulator model as shown in Figure 16. During
operation, the robotic arm is connected to a laptop that
runs both the control interfaces and the image pro—
cessing programs required for various tasks. These
programs are optimized to run efficiently on standard
laptops equipped with only a CPU, without the need for
expensive GPU hardware. This design choice ensures
accessibility and cost-effectiveness for educational en—
vironments. The vision system can utilize either the
laptop's built-in webcam or an external USB camera,
offering flexibility depending on the available hardware.
This setup allows students to easily experiment with Al-
driven robotic applications using readily available and
affordable equipment.

Figure 16. The 3D-printed robotic arm is connected to a
laptop running control and vision-based applications.

To evaluate the face tracking functionality, the sys—
tem was tested under real-time conditions using a
webcam as the input source. The results are illustrated
in Figure 17, which shows the detected face enclosed in
a green bounding box, with the center point (u, v)
marked, and the estimated bounding box area s. These
values were used to compute the corresponding 3D
coordinates (X, Y, Z) of the target position using a
calibrated linear mapping.

Additionally, to monitor the robot's response to the
tracked target, the end-effector coordinates and cal—
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culated joint angles were plotted over time, as shown in
Figure 18. The upper graph demonstrates the dynamic
changes in spatial position X, ¥, Z while the lower graph
visualizes the angular displacement of each joint (8, 6,
6), 65) in real time. The plotted data confirm that the
robot successfully followed the user’s head movement,
making continuous adjustments to its joints based on the
inverse kinematics solution.

Figure 17. Result of the face tracking module.

Real-time Robot Kinematics Visualization
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Figure 18. Real-time plots showing the robot’s kinematic
response.

To evaluate the effectiveness of gesture-based cont—
rol, a series of predefined hand poses was tested using
the MediaPipe Hands module. The system was
configured to recognize eight distinct gestures, each
corresponding to a specific control command for the
robot's motion or gripper operation. The results of the
gesture recognition are illustrated in Figure 19. Each
sub-image in Figure 19 displays a hand pose overlaid
with red landmarks and skeletal lines representing
detected keypoints. The corresponding command is
displayed in red text.

The gesture recognition was performed in real time
with minimal latency (typically under 200 ms), and the
system maintained high reliability under standard
lighting conditions. The experimental results demon—
strate that the hand gesture control module can be
effectively used for intuitive, non-contact control of the
robotic arm.

The integration of computer vision techniques into
robotic control opens up a more intuitive and engaging
way for users, especially students, to interact with
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robotic systems. In this project, two vision-based
interaction methods were implemented: face tracking
and hand gesture recognition. These approaches not
only serve practical functions in controlling the robot's
position and gripper, but also provide students with
valuable hands-on experience in interdisciplinary topics.

Figure 19. Hand gesture recognition results mapped to
robot control commands.

Through the face tracking exercise, students are
introduced to concepts such as object detection, coor—
dinate transformation, and inverse kinematics. By ob—
serving how the robot responds to their head
movements in real time, they gain an understanding of
how image-space data can be translated into physical-
world robot coordinates, and how joint angles are
calculated to reach those positions.

The hand gesture control activity reinforces under—
standing of human-computer interaction, real-time land—
mark detection, and state-based control logic. Students
learn how distinct hand poses can be classified and
mapped to robot commands, enhancing their knowledge
of pattern recognition and control systems.

Overall, these exercises help students build a
foundational understanding of Al, computer vision, and
robotics, while fostering computational thinking, prob—
lem-solving skills, and creativity. More importantly,
they offer a tangible demonstration of how theoretical
concepts in mathematics (e.g., trigonometry, coordinate
geometry), programming, and control engineering come
together in real-world robotic applications.

Figure 20 illustrates a model setup for simulating the
operation of a production line, where the robot performs
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the tasks of picking up and sorting objects transported
on the conveyor. An RGB camera is fixed above the
conveyor to observe objects as they move through the
work area. Images from the camera are processed by a
trained YOLOv12 model, which is capable of accurately
recognizing common objects in the classroom, such as
ballpoint pens, markers, erasers, etc.

7 ]

i

~ Conveyor

[ auibelt

Figure 20. Experimental setup of the pick-and-place
production line model with robotic arm, conveyor belt,
vision system, and sorting containers.

After the object is detected, the system extracts the
coordinates of the bounding box and converts them to
actual coordinates on the conveyor plane. These coor—
dinates are then calculated kinematically to convert
them into rotation angles for each robot joint, enabling
the gripper to move accurately to the object's location.

Finally, the robot uses a gripper to pick up the object
and place it in pre-classified positions according to its
type (for example, a pen in tray A, a marker in tray B,
etc.). This process replicates an industrial automated
product sorting system, demonstrating the effective
combination of computer vision, artificial intelligence,
and precision robotic control systems.
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Figure 21. Training loss and evaluation metrics of the
YOLOvV12 model.

Figure 21 illustrates the training process of the
YOLOvVI2 model on a dataset of common objects in a
school environment, including pens, pencils, and
erasers. The graphs showing the metrics such as
train/loss, val/loss, precision, recall, and mean Average
Precisionat IoU threshold of 0.5 (mAP@0.5) all show a
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steady improvement trend over each epoch. This indi—
cates that the model learns effectively and has the
ability to generalize well.
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Figure 22. Confusion matrix on the validation dataset.

Figure 22 is the confusion matrix after training the
model. Here, labels such as "eraser", "highlight", "mar—
ker", "pen", and "background" all achieve high accu—
racy. Some small confusion between objects of the same
type (e.g., between a pen and a marker) is acceptable in
a real environment.
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Figure 23. Object detection results in real classroom
scenarios.

Figure 23 shows the actual detection results with
objects placed on the conveyor belt. The bounding
boxes and labels are assigned with clear confidence
scores, showing that the system can handle multiple
objects simultaneously and assist the robot in locating
and classifying the object to be picked.

This exercise provides students with an opportunity
to understand and apply artificial intelligence in a real-
world context, specifically in the field of robotic
automation. By simulating a smart production line using
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a robotic arm and a conveyor belt, learners gain insight
into how robots are used in industrial environments for
tasks such as object detection, classification, and
automated sorting.

Through the data collection and model training
process, students become familiar with essential steps in
developing an Al system. These include capturing and
annotating images, organizing datasets, training object
detection models (such as YOLOv12) using platforms
like Roboflow and Google Colab, and validating model
performance. During this process, students also learn
how to interpret key evaluation metrics, such as preci—
sion, recall, Mean Average Precision (mAP), and loss
functions, which helps them develop critical skills in
assessing Al effectiveness.

Beyond the software component, this activity emp—
hasizes the integration of Al with hardware systems.
Students learn how object detection outputs (e.g.,
bounding box coordinates) are translated into robot joint
movements using inverse kinematics. The combination
of computer vision, Al models, servo motors, a conve—
yor belt, and gripper control demonstrates how multiple
subsystems can be orchestrated to achieve intelligent
automation.

By completing this exercise, students not only dee—
pen their understanding of robotic systems but also
develop interdisciplinary competencies that span Al,
computer vision, mechanical control, and real-time sys—
tem integration, key areas in modern STEM and
engineering education.

6. CONCLUSIONS

This paper presented the development of a low-cost,
open-source robotic arm platform for STEM education,
with a focus on integrating mechanical design, embed—
ded control, and intelligent perception. The system
comprises a 4-DOF robotic manipulator driven by servo
motors, an ESP32-based embedded controller for real-
time operation, and dual control interfaces supporting
both local (PyQt5) and remote (IoT-based) access.
Additionally, computer vision modules powered by
YOLO object detection and MediaPipe-based face and
hand tracking were integrated to enable interactive, Al-
driven manipulation tasks.

Experimental demonstrations validated the system’s
functionality across multiple educational scenarios. Stu—
dents were able to control the robot via facial tracking
and hand gestures, detect and pick objects using real-
time vision, and interact with the platform through both
GUI and cloud-based interfaces. The results confirm
that the platform effectively supports interdisciplinary
learning, covering topics in mechanics, electronics,
programming, Al, and human-robot interaction. More—
over, the platform’s modular and extensible design en—
sures scalability and adaptability to a range of educa—
tional levels and curricula.

For future work, several enhancements are envisi—
oned. These include implementing inverse kinematics
for automated trajectory planning, adding depth sensing
for 3D perception, and extending the Al modules with
learning-based grasp planning or voice interaction.
Further classroom evaluations across different age

VOL. 54, No 1, 2026 = 103



groups and education settings will also be conducted to
quantitatively assess the platform’s impact on learning
outcomes and engagement. Ultimately, the proposed
system contributes toward bridging the gap between
traditional educational robotics and the intelligent,
connected systems demanded by Industry 4.0.
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NOMENCLATURE
0 Base rotation joint angle (rotation about
1 . .
vertical Z-axis)
6, Vertical-plane joint angle (shoulder)
05 Vertical-plane joint angle (elbow)
04 Gripper angle
X, Y, 2) End—effector position in robot Cartesian
coordinates
Pixel coordinates of the bounding-box
(u, v) e .
centroid in the image plane
s Face bounding-box area
W, Hy Width and height of the video frame
ko k Scaling factors in mapping from (u, v,
T 9tX Y, 2)
l; Link length(s) in the kinematic model
dy Vertical offset from the base

Acronyms and abbreviations

AC Alternating Current

Al Artificial Intelligence
C1-C5 Step size levels

DC Direct Current

DC-DC DC-to-DC Converter
DOF Degree(s) of Freedom
GPIO General-Purpose Input/Output
GUI Graphical User Interface
IoT Internet of Things

IoU Intersection over Union
K-12 Kindergarten to 12th grade

MQTT Message Queuing Telemetry Transport
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PWM Pulse Width Modulation

RGB Red-Green—Blue

ROS Robot Operating System

STEM i;;f}rll;ia’geczhnology, Engineering, and
USB Universal Serial Bus

YOLO You Only Look Once

YOLOvI2 YOLO version 12

mAP mean Average Precision

mAP@0.5 mean Average Precision at loU=0.5

PA3BOJ OBPA30OBHE POBOTCKE
INIAT®OPME CA IBOCTPYKHUM
KOHTPOJIHUM UHTEP®EJCUMA H
MHTEJUT'EHTHOM UHTEPAKIIMJOM
3ACHOBAHOM HA KOMIIJYTEPCKOM BUY

A.®. Tun, B.T.H. Xan, H.H. Tun, H.B.JI. Xyj,
T.K. Tyan, H.H. llyj, ®.T. dart, B.K. Xuey,
B.J. Konr

ORaj pan mpejacTaB/ba pas3Boj jedTuHE 00pa3oBHE PO—
0oTcke IiathopMe ca OMOryheHOM BEITAYKOM HHTE—
JIUTCHIIMjOM JTU3ajHUpaHEe Ja M0o0O0JbllIa MPAKTHYHO
CTEM yueme. CucteM ce cacToju 011 poOOTCKe pyke ca 4
crenena cinobone (DOF) koncrpymcane ox  3/1
LITAMIIAHUX KOMIIOHEHTH, KOHTpOJIKCaHe Mmomohy Koia
3acHoBaHOr Ha ESP32 u mHTEerpucane ca JIOKaTHUM U
BeO-0azupannM uHTepdejcuMa 3a (QISKCHOWIaH paj.
PaszBujena cy maBa KoHTpomHa uHTepdejca: JIOKAITHU
neckron 'YW wmsrpahen ca PiKt5S u ynameHu BeO-
6aszupanu uHTepdejc koju kopuctt MKTT mnporokod.
O0a unrepdejca omoryhaBajy KOPUCHHIIMMA Ja PYYHO
KOHTpOJIMIITY YTJIOBE 3rJ1000Ba pobota, mpuiarol)aBajy
BEJIMUMHY KOpaka TMokpeTa, Bpahajy ce Ha mnoapasy—
MEBaHe MO3MLMje W MpaTe CTama 3[J000Ba y PealHOM
BpeMeHy. OBU uHTEp(EjCH NpYyKajy WHTYUTHBHY MHTE—
pakuyjy, omoryhaBajyhu yuenumnmma pa pasymejy
KOHTpPOITy TOKpeTa y poborurm. Jla 6u ce mHTErpmcana
BeITayKa HMHTEJMICHIMja ¥ KOMIGYTEPCKHA BHUI, MMI—
JIEMEHTHpaHa cy TpU Moxyia: npaheme Jiina, KOHTpoa
MOKpeTa pykama M Jerekuuja odjexara. [Ipaheme muna
NPEBOJIM TIOJI0KAj M BEIMYUHY Jina y 3 /1 koopauHaTe 3a
KpeTalbe po0OTa y pealHOM BpeMeHy Kopuctehn
WHBEp3HY KHHeMaTuky. llperno3HaBame IIOKpeTa py—
kama kopuctu Menuallune 3a Tymayeme 1o3a npcTujy u
u3BpILIaBamke oAroBapajyhux paamu podora. Moayn 3a
nereknujy objekara kopuctd YOLOvV12 momen oOydeH
Ha 00jeKTHMa y YYMOHHIH (OJIOBKE, TYMHIIE, MapKepH) 3a
00aBJbarbe ayTOHOMHHUX 3a/1aTaKka Oupama U MOCTaBIbarbha
Ha CHMYJHMPAaHOM TpPAHCIIOPTHOM cHUcTeMy. Ekcriepu—
MEHTAIHHU Pe3YyITaTH MOTBPhYjy €PHUKAacCHOCT cUCTEMA Y
npahemy y peaJHOM BpeMeHY, HHTEpIPETaljy MOKpeTa
U MaHunynauuju objexruma. ['padrkoHM yriioBa 3riio—
0oBa W KOOpIAMHATa PAmZHOT IIPOCTOPA Yy PpEaTHOM
BpeMEHy WIyCTpPYjy OJ3MBHO IOHamame cucrema. Opa
uHTerprcana miargopma omoryhaBa cryneHTHMa Ja
UCTPaXKyjy BEIUTAa4YKy MHTEe—JIMICHLHW]Y, BU3U]Yy U POOO—
THKY y jeIMHCTBEHOM OKpyXemy. Kpo3 MHTepakTHBHE
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BeXOE CTUUY Npak—THYHO HCKYCTBO Y IPOTpaMHpamby, U poOOTCKOj KOHTPOIH, NOBE3yjyhu TeopHjcKo 3Hame U
pa3Bojy AU mopzena, nu3ajHy KOPUCHUYKOT MHTepdejca IpUMEHE y CTBAPHOM CBETY.
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