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Development of an Educational 
Robotic Platform with Dual Control 
Interfaces and Intelligent Computer 
Vision-Based Interaction 
 
This paper presents the development of a low-cost, AI-enabled educational 
robotic platform designed to enhance hands-on STEM learning. The 
system consists of a 4-degree-of-freedom (DOF) robotic arm constructed 
from 3D-printed components, controlled by an ESP32-based circuit and 
integrated with both local and web-based interfaces for flexible operation. 
Two control interfaces were developed: a local desktop GUI built with 
PyQt5 and a remote web-based interface using the MQTT protocol. Both 
interfaces allow users to manually control robot joint angles, adjust 
movement step sizes, reset to default positions, and monitor real-time joint 
states. These interfaces provide intuitive interaction, enabling students to 
understand motion control in robotics. To integrate artificial intelligence 
and computer vision, three modules were implemented: face tracking, hand 
gesture control, and object detection. Face tracking translates facial 
position and size into 3D coordinates for real-time robot movement using 
inverse kinematics. Hand gesture recognition uses MediaPipe to interpret 
finger poses and execute corresponding robot actions. The object detection 
module employs a YOLOv12 model trained on classroom objects (pens, 
erasers, markers) to perform autonomous pick-and-place tasks on a 
simulated conveyor system. Experimental results validate the system’s 
effectiveness in real-time tracking, gesture interpretation, and object 
manipulation. Real-time plots of joint angles and workspace coordinates 
illustrate the system’s responsive behavior. This integrated platform 
enables students to explore AI, vision, and robotics in a unified 
environment. Through interactive exercises, they gain practical experience 
in programming, AI model development, user interface design, and robotic 
control, bridging theoretical knowledge and real-world applications. 
 
Keywords: Educational Robotics; STEM Education; Robotic Arm; 
Artificial Intelligence; IoT. 

 
 

1. INTRODUCTION 
 

STEM (Science, Technology, Engineering, and Mathe–
matics)education has emerged as a critical pillar in 
preparing future generations for the demands of an 
increasingly technology-driven world. By emphasizing 
the integration of Science, Technology, Engineering, 
and Mathematics, STEM curricula aim to cultivate 
problem-solving abilities, computational thinking, 
design creativity, and interdisciplinary collaboration 
among students [1-3]. The growing complexity of mo–
dern engineering and automation systems underscores 
the need for students to engage with real-world tools 
and scenarios from an early stage. Numerous studies 
have demonstrated that active, project-based learning 

approaches significantly enhance the retention of know–
ledge and the development of technical competencies, 
making STEM education an essential component of 
national and global educational strategies [4-5]. As the 
Fourth Industrial Revolution unfolds, competencies in 
fields such as artificial intelligence (AI), computer vi–
sion, and the Internet of Things (IoT) have become 
indispensable across industries [6-7]. Consequently, 
there is a growing need to modernize STEM education 
by integrating these cutting-edge technologies into 
hands-on, project-based learning environments that fos–
ter both technical knowledge and system-level thinking. 

Robotics has proven to be one of the most powerful 
tools for implementing STEM education in practice. 
Through robotics, learners can gain hands-on experi–
ence in mechanical design, electronics, programming, 
sensor integration, and system-level thinking. The 
interactive and visual nature of robotic systems not only 
makes abstract engineering concepts more accessible 
but also increases student engagement, particularly in 
K–12 and early undergraduate education. Robotic sys–
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tems offer learners the opportunity to design, build, test, 
and refine solutions to real-world challenges, while 
developing essential 21st-century skills such as 
teamwork, innovation, and resilience. 

Over the past decade, a wide range of educational 
robotic platforms have been developed and deployed 
with the aim of supporting STEM education. These 
systems not only promote hands-on learning but also 
bridge theoretical knowledge with practical applications 
through interdisciplinary activities. In [8], Mondada et 
al. presented R2T2, a cross-continental collaborative 
robotic event engaging over 100 students from Europe 
and Africa in a space rescue scenario using real-time 
video streaming and remote programming. This initi–
ative emphasized pedagogical outcomes over compe–
tition, highlighting inclusion and the adoption of en–
hanced methodologies among African participants. In 
[9], Zeng et al. developed iArm, a 6-DOF robotic arm 
kit with vision and conveyor modules, aiming to en–
hance students' computational thinking through a 
semester-long program. Their study showed notable 
improvements in students’ abilities, demonstrating the 
educational impact of structured robotics curricula. 
Robotic platforms have also proven effective for special 
education. For instance, Bargagna et al. in [10] adapted 
educational robotics for children with Down syndrome, 
showing how the Bee-Bot robot can support cognitive 
and social development in inclusive settings. 

Mobile robotics has gained attention for its acces–
sibility and versatility. In [11], Nguyen et al. integrated 
a RockChip AI processor with voice recognition (Viet–
namese, English, Korean) into a mobile robot controlled 
via Android, enabling multilingual STEM learning 
through natural interaction. Similarly, Haruna et al. in 
[12] developed a mobile robot for teaching material 
handling in mechanical workshops, demonstrating 
improved learning outcomes through quasi-experi–
mental evaluation. Expanding affordability and custo–
mization, Pedre et al. introduced ExaBot [13], a multi-
purpose, open-source mobile robot that is more than ten 
times less expensive than commercial platforms, serving 
both research and outreach purposes. Desktop manipu–
lators also gained traction, with Vega and Pérez [14] 
proposing G-ARM, a low-cost, ROS2-integrated robotic 
arm validated in university courses for motion planning 
and simulation. 

Several studies focus on lowering the cost barrier 
while maintaining functionality. In [15], Eaton and 
Tanveer designed a cost-effective ROS-based robotic 
arm for instructional labs, offering insights into compo–
nent selection and enabling broader student partici–
pation. Čehovin Zajc et al. [16] presented a low-weight, 
open-source robotic platform that was validated across 
different age groups and academic levels, confirming its 
motivational and cognitive benefits. Meanwhile, 
Chavdarov et al. [17] proposed a 3D-printed Delta robot 
for educational purposes, emphasizing ease of manufac–
turing, geometric kinematics, and trajectory accuracy. 

More recently, integrating AI and IoT into educa–
tional robotic platforms has opened new opportunities to 
enhance student engagement and expose learners to 
intelligent and connected systems — capabilities that 
are becoming increasingly essential in smart manufac–

turing, service robotics, and cyber-physical systems. 
While existing robotic educational platforms provide 
meaningful engagement in mechanics and control 
systems, most are limited in their integration of emer–
ging technologies such as artificial intelligence (AI), 
computer vision, and the Internet of Things (IoT). These 
technologies are not only transforming modern industry 
but are also becoming increasingly relevant in educati–
onal contexts, enabling students to explore intelligent 
automation, human–robot interaction, and cloud-based 
control systems. 

Most available educational robotic arms typically 
support only basic kinematic control and rely on scrip–
ted motions or button-based interfaces. Although some 
systems allow for sensor integration or mobile app 
control, they rarely incorporate advanced features like 
deep learning-based object recognition, vision-guided 
manipulation, or real-time remote interaction through 
IoT protocols. As a result, they fail to provide students 
with a holistic understanding of modern intelligent ro–
botic systems. 

Several recent efforts have attempted to bridge this 
gap. For example, Vega and Cañas [18] introduced 
PiBot, an open, low-cost mobile robot built on Rasp–
berry Pi, featuring an onboard camera and a Python-
based software infrastructure. While it enhances visual 
learning through onboard vision, its application is 
limited to basic perception and does not yet incorporate 
AI or IoT functionality. Similarly, Zheng [19] proposed 
a robot interaction system utilizing computer vision and 
deep machine learning to support English cultural 
education; however, the application is domain-specific 
and not oriented toward general robotics control or 
STEM-focused platforms. In another study, Antonio et 
al. [20] presented a mechatronics training system that 
utilizes computer vision for 2D positioning of LEGO 
mobile robots. Although effective in teaching funda–
mental robotics concepts, the system lacks integration 
with AI-based perception or remote connectivity. In 
[21], Mamatnabiyev et al. proposed FOSSBot, an open-
source robot designed to support a wide range of com–
puter science courses in tertiary education. A major 
strength of this platform lies in its broad applicability, 
as it is equipped with IoT technologies for sensing and 
control, and supports courses in AI, computer vision, 
electronics, and networking. Its open hardware/software 
architecture allows deep customization and curriculum 
alignment. However, despite its flexibility, FOSSBot is 
primarily targeted at software-level educational 
activities and lacks physical manipulation capabilities, 
such as robotic arms or grippers, which limits its 
applicability in teaching mechanical design or control–
ling articulated robots. Manzoor et al. [22] developed a 
6-DOF articulated robotic arm equipped with an 
onboard camera and force sensor at the end effector, 
enabling autonomous object manipulation and advanced 
control experiments. This platform is particularly strong 
in supporting education in mechanical engineering, 
robotics, and control systems, with applications ranging 
from grasping to trajectory planning. Moreover, its 
open-source nature and rich sensory feedback allow 
both beginners and advanced users to explore a wide 
spectrum of robotics applications. Nevertheless, while 
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the system supports basic perception through vision, it 
does not natively integrate modern AI-based object 
recognition or IoT-based remote access, which limits its 
alignment with current trends in intelligent robotics. 

Educational robots that integrate advanced features 
—such as AI-enhanced vision modules or IoT connec–
tivity—are often prohibitively expensive or difficult to 
customize because of closed hardware/ software eco–
systems. This situation creates a critical gap in STEM 
education: there is still a lack of affordable, open, and 
extensible robotic platforms that simultane–ously 
support mechanical design learning, embedded control, 
AI-driven perception, and IoT-based communi–cation 
within a unified framework. 

To address this gap, this paper presents a novel, low-
cost, and fully integrated 4-DOF educational robotic 
arm platform intended for hands-on STEM and mecha–
tronics training. The proposed system consists of four 
tightly coupled subsystems: (i) a servo-driven robotic 
manipulator with a gripper, (ii) an ESP32-based embed–
ded control unit enabling I2C communication for multi-
channel PWM generation, (iii) dual control interfaces 
that support both local operation (desktop PyQt5 GUI) 
and remote access (web/IoT-based control), and (iv) an 
AI-powered computer vision module (YOLO-based) for 
object detection and vision-based interaction. 

The platform provides a reproducible reference de–
sign that can be directly deployed in teaching labora–
tories to support experiments in robot kinematics, 
actuator control, embedded programming, sensor/ 
communication integration, and AI-based perception. 
By combining low-cost hardware with an open and 
modular architecture, the system can be easily custo–
mized for different curricula and extended with addi–
tional sensors or algorithms, thereby lowering the entry 
barrier for institutions and enabling scalable, practice-
oriented robotics education. 

The remainder of this paper is organized as follows. 
Section 2 presents an overview of the overall system 
architecture and its key components. Section 3 details 
the design of the robotic arm system, including mecha–
nical construction, control circuitry, human–machine 
interface, and kinematic modeling. Section 4 focuses on 
the integration of artificial intelligence and computer 
vision, highlighting applications such as face tracking, 
hand gesture recognition, and object detection for pick-
and-place tasks. Section 5 presents and discusses the 
experimental results, demonstrating the educational po–
tential and technical performance of the system. Finally, 
Section 6 concludes the paper and outlines future 
directions for enhancement and classroom deployment. 

 
2. SYSTEM ARCHITECTURE  

 
The proposed robotic arm platform is designed as a 
comprehensive educational tool that integrates mecha–
nical design, embedded electronics, IoT connectivity, 
and artificial intelligence to support hands-on STEM 
learning. The system is composed of four tightly integ–
rated subsystems: the mechanical structure, the elect–
ronic control unit, the user interfaces (both local and 
remote), and the AI-powered computer vision module. 
Figure 1 illustrates the overall system architecture. 

 
Figure 1. System architecture of the robotic arm platform 
for STEM education, integrating AI-based vision, IoT 
communication, and multimodal control interfaces 

At the core of the system lies a 4-DOF robotic arm, 
which is actuated using multiple MG996R servo mo–
tors. The robot is designed using Autodesk Inventor and 
fabricated with 3D-printed components, enabling cost-
effective manufacturing and easy maintenance. The 
end-effector is a servo-actuated gripper, capable of per–
forming basic manipulation tasks such as object 
grasping and placement. 

The control unit is built around the ESP32 micro–
controller, which provides both computation and wire–
less connectivity. A PCA9685 PWM driver is used to 
generate the PWM signals required to control up to 16 
servo motors, communicating with the ESP32 via the 
I2C protocol. The entire circuitry is custom-designed 
and documented using Altium Designer, ensuring 
reliable operation and reproducibility for educational 
deployments. 

To interact with the robotic arm, two types of 
control interfaces are provided: 

• A desktop application built with PyQt5, allo–
wing users to control each joint of the robot locally and 
visualize joint angles in real-time. 

• A web-based control interface developed using 
the Blynk IoT platform, which enables users to remotely 
operate the robot through a smartphone or tablet, illus–
trating key concepts in IoT and remote robotics. 

Additionally, the platform is enhanced with an AI 
and computer vision module. A camera mounted on or 
near the robot captures real-time video, which is then 
processed using pre-trained and custom-trained deep 
learning models, YOLOv12 for object detection. The 
system also supports gesture-based control and human-
robot interaction by leveraging models capable of hand 
tracking and face detection, empowering students to 
explore applications of AI in robotics. 

This robotic platform is purposefully designed to 
serve as a multidisciplinary learning tool, supporting a 
wide range of topics including mechanical design, 
electronic circuit development, embedded systems 
programming, IoT communication, AI model deploy–
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ment, and computer vision applications. It provides 
students with an integrated environment that allows 
them to practice both theoretical and practical aspects of 
STEM disciplines in a hands-on and engaging manner. 

 
3. DESIGN OF THE ROBOT ARM SYSTEM 

 
3.1 Mechanical design 
 
Figure 2 illustrates the complete mechanical structure of 
the robotic platform, which consists of a low-cost, 3D-
printed, 4-degree-of-freedom (DOF) manipulator integ–
rated with a conveyor belt system. Designed primarily 
for educational and research purposes, the platform de–
monstrates practical applications of robotics, automa–
tion, and intelligent systems. The manipulator is 
equipped with a servo-actuated gripper at the end-
effector, enabling autonomous grasping and arrange–
ment of objects transported by the conveyor. The 
system is designed to be compatible with AI and com–
puter vision modules, allowing for the implementation 
of object detection, tracking, and intelligent manipu–
lation tasks in real-world scenarios. 

 
Figure 2. Diagram of the complete mechanical system  

 
Figure 3. The manipulator design using Autodesk Inventor 

Figure 3 illustrates the 3D design of the robot arm 
modeled in Autodesk Inventor. The robot arm features 
4-DOF, with each joint actuated by an MG996R servo 
motor, offering precise motion control at an affordable 
cost, making it suitable for educational applications. 
The specifications of the servo motors are provided in 
Table 1. Since each servo delivers a relatively low tor–

que of 11 kg·cm, the 2nd, 3rd, and 4th joints are equip–
ped with dual motors to ensure sufficient torque for 
rotating the corresponding links.  

The robotic manipulator possesses 4 DOF. The first 
joint enables rotation about the vertical (Z) axis, while 
the remaining joints provide motion around horizontal 
axes. Although each MG996R servo motor is capable of 
rotating up to 180 degrees, the actual range of motion at 
each joint is constrained by the mechanical structure of 
the system. The specific angular limits for each joint are 
summarized in Table 2. 
Table 1. Specifications of the MG996R 

Specification Value 
Nominal voltage 4.8 to 6V 

Speed 4.8V: 0.19s/60-degree rotation 
6.0V: 0.15s/60-degree rotation 

Current draw 
10mA idling 
170mA operating without a load 
1400mA at stall 

Stall torque 4.8V: 9.4kg/cm 
6.0V: 11kg/cm 

Dimensions 40.7x19.7x42.9mm 

Table 2. Joint Rotation Ranges of the 4-DOF Robotic 
Manipulator 

Joint Range 
The first joint 0 to 180 degrees 
The second joint 20 to 150 degrees 
The third joint -60 to 60 degrees 
The fourth joint -90 to 90 degrees 
The gripper 0 to 9 degrees 

 
As shown in Figure 4, the base of the manipulator 

consists of a rotating platform and a servo mounting 
bracket. A centrally mounted servo motor provides 
rotation around the vertical (Z) axis, enabling the first 
degree of freedom. To support the lifting of the arm 
structure, two additional servo motors are symmetrically 
mounted on either side of the base. These servos operate 
in parallel to actuate the second joint, thereby increasing 
the available torque and ensuring stable motion of the 
upper links.  

 
Figure 4. The Base of the Manipulator 

As illustrated in Figure 5, the first link serves as the 
intermediary component connecting the second and 
third degrees of freedom. The lower mounting holes are 
designed to interface with the actuators of the second 
joint, while the upper holes connect to the third joint’s 
actuators. The link consists of two S-shaped plates, each 
5 mm thick. When assembled, the component measures 
180 mm in length and 60 mm in width.  

The second link incorporates a servo mounting 
structure that is nearly identical to the first link’s design, 
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except for an additional 5 mm in width when assem–
bled. This component mounts four servo motors: two 
are aligned with the upper mounting holes of the first 
link to actuate the third degree of freedom, while the 
remaining two drive the end-effector, enabling the 
fourth degree of freedom (see Fig. 6). 

 
Figure 5. Structural Design of the First Link in the Robotic 
Manipulator 

 
Figure 6. Servo Mounting Configuration for the Third and 
Fourth Degrees of Freedom 

The end effector, as shown in Figure 7, is a 3D-
printed component designed to achieve cost-effecti–
veness and facilitate easy replication. It consists of two 
plates with mounting holes that connect to the pair of 
servo motors responsible for actuating the fourth joint. 
An additional servo motor is integrated to control the 
fifth degree of freedom, which drives a two-finger 
gripper mechanism used for object manipulation 

 
Figure. 7. The end effector 

 

3.2 Control circuit design 
 
Figure 8 illustrates the overall architecture of the control 
circuit for the robotic platform. The system integrates 
key electronic components, including an ESP32 micro–
controller, a PCA9685 16-channel PWM driver, a relay 
module, a 12V power supply, and a 5V voltage regu–
lator module. Each component is functionally assigned 
to ensure the reliable and coordinated operation of the 
robotic manipulator and the conveyor system. 

The ESP32 acts as the central processing unit of the 
control system. It is responsible for communicating with 
the user interface—either through a local PC connection 
or a cloud-based web interface—allowing real-time 

wireless control and monitoring. Upon receiving control 
commands, the ESP32 transmits the corresponding 
PWM control signals via the I²C protocol to the 
PCA9685 module, which precisely regulates the rota–
tion angles of the eight servo motors responsible for 
actuating the five degrees of freedom of the robotic arm. 
These include dual-servo configurations at certain joints 
to ensure sufficient torque. 

 
Figure 8. The overall architecture of the control circuit 

The PCA9685 module is a 16-channel, 12-bit PWM 
driver that communicates with the ESP32 using the I²C 
protocol, allowing for the simultaneous control of up to 
16 servo motors using only two GPIO pins. In this 
system, it controls eight MG996R servo motors for the 
4-DOF robotic arm. The module operates at 5V and 
supports PWM frequencies from 24 Hz to 1526 Hz, 
with a 12-bit resolution (4096 steps), ensuring smooth 
and accurate servo movement. An external power input 
enables the module to supply sufficient current to all 
connected servos, enhancing stability and reducing load 
on the ESP32. 

In parallel, the ESP32 also outputs a digital control 
signal to a 5V relay module, which in turn switches a 
12V DC motor responsible for driving the conveyor 
belt. This indirect control via relay ensures isolation 
between the logic and power circuits, improving both 
safety and durability. 

Power for the system is supplied by a 12V, 5A 
adapter with a 220V AC input, providing sufficient 
current for both the servos and the conveyor motor. A 
DC-DC converter module is employed to step down the 
12V supply to 5V, which powers the PCA9685 and 
other low-voltage peripherals. 

 
3.3 Control Interface Design 

 
To enable flexible and user-friendly interaction with the 
robotic platform, two control interfaces were developed: 
one for local control via USB connection to a computer, 
and another for remote control over the Internet. Both 
interfaces are designed to send control commands to the 
ESP32 microcontroller, which interprets the input and 
actuates the corresponding joints of the robot. The local 
interface is implemented as a desktop application for 
direct, real-time control during development and testing, 
while the web-based interface allows users to operate the 
system remotely using mobile or cloud-connected devices. 
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A desktop-based control interface was developed to 
enable real-time and intuitive manipulation of the robot 
arm. As illustrated in Figure 8, the interface was 
designed using Qt Designer and implemented in Python 
using the PyQt5 library. It provides individual control 
panels for each joint, including the base, shoulder, 
elbow, forearm, wrist, and gripper. 

Each panel features a slider that enables users to 
quickly adjust the corresponding joint to any desired 
position. Radio buttons are provided to select the step 
size (C1–C5), which determines the number of degrees 
the joint angle changes when the Increase or Decrease 
buttons are pressed. Smaller step values are used for 
fine adjustments, while larger steps enable faster move–
ments. A Reset button is included to return the robot to 
its default home position, with joint angles preset to [0°, 
90°, 90°, 0°, 0°]. 

 
Figure 9. Desktop-Based Graphical User Interface for 
Robotic Arm Control 

Additionally, each joint panel includes a label 
displaying the current angle in real-time, allowing the 
user to monitor joint positions throughout operation. 
This interface offers a flexible and user-friendly envi–
ronment for both precise joint tuning and rapid pose 
adjustment, making it particularly effective for educa–
tional demonstrations and development tasks. 

In addition to the desktop application, a web-based 
control interface was developed to enable remote opera–
tion of the robotic system over the Internet. As shown in 
Figure 9, this interface replicates the functionality of the 
local GUI, including joint-specific sliders, current angle 
displays, step adjustment options (via radio buttons), 
and reset functions. 

 
Figure 10. Web-Based Control Interface Using MQTT 
Protocol for Remote Robot Operation 

The web interface communicates with the ESP32 
microcontroller using the MQTT (Message Queuing 
Telemetry Transport) protocol, a lightweight and well-
suited protocol for real-time IoT applications. Com–
mands issued from the web interface, such as adjusting 
joint angles or initiating a reset, are published as MQTT 
messages and received by the ESP32, which then 
performs the corresponding control actions. 

This web-based interface provides the flexibility to 
remotely control the robot from any device with Internet 
access, making it particularly useful for educational de–
monstrations, distributed learning environments, or 
applications where physical proximity to the robot is not 
feasible. 

 
3.4 Robot arm kinematics 
 
The robotic arm features a 4-DOF configuration for 
spatial positioning and an additional DOF for end-
effector actuation. Figure 11 presents the kinematic 
structure of the robotic arm, including the joint angles 
θ0, θ1, θ2, θ3, link lengths l1, l2, l3, and the vertical offset 
(d) from the base. To control the robot in Cartesian 
space, both forward and inverse kinematics are formu–
lated to compute the mapping between joint angles and 
end-effector coordinates. 

 
Figure11. Kinematic diagram of the robotic arm 

The position of the end-effector (x, y, z) in the world 
coordinate frame can be expressed as a function of the 
joint angles (θ0, θ1, θ2, θ3) and the link lengths l1, l2, l3, 
as follows: 

( )
( )

1 1 2 12 3 123 0

1 1 2 12 3 123 0

1 1 2 12 3 123

1 2 3

x l c l c l c c

y l c l c l c s
z l s l s l s d
θ θ θ θ

= + +

= + +

= + + +

= + +

 (1) 

where, c0 = cosθ0, s0 = sinθ0, c1 = cosθ1, s1 = sinθ1, c12 = 
cos(θ1 + θ2),  s12 = sin(θ1 + θ2) , c123 = cos(θ1 + θ2 + θ3),  
s123 = sin(θ1 + θ2 + θ3), θ0 represents the base rotation, 
while θ1, θ2, θ3 correspond to the vertical plane joint 
angles. 

Given a target position (x, y, z), the joint angles can be 
computed by solving the inverse kinematics as follows: 

First, compute the base rotation angle: 

( )0 tan 2 .a y xθ =   (2) 
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Sum the squares of the two sides of Equation (1): 

( )
( )

2 2
1 1 2 1 2 3

2 1 2 1 2 3

cos cos cos

sin sin cos

l l x y l

l l z d l

θ θ θ θ

θ θ θ θ

+ + = + −

+ + = − −
 (3) 

Denote 2 2
3 cosm x y l θ= + − , n = z – d – l3cosθ. 

Sum of the squares of the two sides of the Equation (3): 

2 2 2 2
1 2 1 2 22 cosl l l l m nθ+ + = +  (4) 

So we can solve θ2: 

2 2 2 2
1 2

2
1 2

cos
2

m n l l
l l

θ
+ − −

=  (5) 

Denote k1 = (l1 + l2cosθ2), k2 = l2sinθ2. Transform 
Equation (3) to get: 

1 1 2 1

1 1 2 1

cos sins
sin cos

k k m
k k n

θ θ
θ θ

− =

+ =
  (6) 

Solve for θ1: 

( ) ( )1 1 2tan 2 , tan 2 ,a m n a k kθ = −  (7) 

Finally, determine θ3: 

3 1 2θ θ θ θ= − −   (8) 

This inverse kinematics formulation enables the 
robot to compute the necessary joint angles to reach a 
desired target position, which is essential for executing 
robot control. 

 
4. AI AND COMPUTER VISION SYSTEM 
 
4.1 Face tracking and hand gesture control 
 
To enhance the intuitiveness and interactivity of the 
robotic platform, a control mechanism based on facial 
tracking and hand gesture recognition was implemented 
using AI-based computer vision techniques. This app–
roach enables users to operate the robot without requi–
ring physical interfaces, making the system particularly 
suitable for educational environments and human-robot 
interaction research. 

 
Figure 12. Face detection using the MediaPipe Face 
Detection model 

The face tracking system, as illustrated in Figure 12, 
employs the MediaPipe Face Detection model [23], 
which performs real-time localization of the user’s face 
using a lightweight convolutional neural network. Once a 
face is detected, the algorithm provides a bounding box 
from which the center coordinates (u, v) and the area s of 
the face are computed. Specifically, (u, v) denote the 
pixel coordinates of the bounding-box centroid in the 
image plane, where u and v correspond to the horizontal 
(x-axis) and vertical (y-axis) directions, respectively. The 
face area s is defined as the bounding-box area in pixels, 
calculated as s = height × width (in pixels2).  

These parameters are then mapped to the robot's 
spatial coordinates (X, Y, Z) based on the following 
transformation equations: 

1

2

2

2

y

z

x

wY u k

hZ v k l d

X sk l

⎛ ⎞= −⎜ ⎟
⎝ ⎠
⎛ ⎞= − − + +⎜ ⎟
⎝ ⎠

= +

  (9) 

where w and h are the width and height of the video 
frame, and kx, ky and kz are scaling factors that adjust the 
sensitivity and fit the robot's workspace. This mapping 
enables the robot to track the user’s facial position in 
three dimensions (horizontally, vertically, and in depth) 
based on simple head movements and the distance from 
the camera. 

To recognize hand gestures, the system utilizes 
MediaPipe Hands[24-25], a deep learning-based model 
that detects and tracks 21 key landmarks on the human 
hand in real-time. These landmarks represent anato–
mical features such as finger tips, joints, and the wrist, 
enabling the system to analyze the spatial configuration 
of the hand with high precision, as shown in Figure 13. 

 
Figure 13. Hand gestures detection with 21 landmarks 

The detection of gesture states is based on two key 
aspects: (1) the number of extended fingers, determined 
by comparing the position of each fingertip to its 
corresponding joint. (2) The orientation of the palm, 
inferred from the relative positions of key landmarks 
(e.g., wrist vs. fingertips), to determine whether the 
palm is facing up or down. 

To determine which fingers are extended, the system 
compares the vertical (Y-axis) coordinates of each 
fingertip to the joint two levels below it: 
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• If the Y-coordinate of the fingertip is smaller 
(i.e., higher in the image frame) than the joint 
below it, the finger is considered extended. 

• Otherwise, it is classified as folded. 
For the thumb, which is oriented laterally, the X-axis 

is used instead: 
• On the right hand, the thumb is extended if the 

tip is to the left of its joint. 
• On the left hand, the thumb is extended if the tip 

is to the right of its joint. 
Once the system identifies which fingers are exten–

ded, it counts the number of raised fingers and evaluates 
the overall hand configuration. The gesture classifi–
cation rules are then applied as follows (see Figure 14): 

Raising one finger with the palm facing up or down 
to increase or decrease the robot’s X-coordinate, res–
pectively. 

Raising two fingers (index and middle) with the 
palm facing up/down to control the Y-coordinate. 

Raising three fingers (index, middle, and ring) with 
the palm facing up/down to adjust the Z-coordinate. 

A fully open palm is interpreted as a command to open 
the gripper, while a closed fist is used to close the gripper. 

 
Increase the X coordinate       Decrease the X coordinate 

 
Increase the Y coordinate       Decrease the Y coordinate 

 
Increase the Z coordinate       Decrease the Z coordinate 

 
Open gripper                    Close gripper 

Figure 14. The gesture classification rules 

This multimodal control strategy enables manipu–
lation of the robot’s position and end-effector in a 

contactless manner. The combination of facial and hand 
gesture inputs provides both gross and fine control 
capabilities, enhancing the user experience and demon–
strating the potential of AI-driven human-robot inter–
action. 

 
4.2 Object Detection for Robot Pick-and-Place 

Applications 
 
To enable autonomous pick-and-place functionality, an 
object detection system was integrated into the robotic 
platform. The goal is to allow the robot to recognize and 
manipulate commonly used classroom items such as 
pencils,markers, and erasers (see Figure 15). These 
objects are typically small, lightweight, and varied in 
shape and color—posing a moderate challenge for vi–
sion-based systems in real-world conditions. 

 
Figure 15. Objects in the dataset  

To address this, we trained a custom object detection 
model based on YOLOv12, a state-of-the-art deep lear–
ning architecture known for its balance between 
detection accuracy and inference speed [26]. The trai–
ning dataset was collected specifically for this appli–
cation, comprising approximately 200 images per object 
class. Images were captured under different lighting 
conditions and backgrounds to improve the model’s 
generalization capability. The annotation process was 
carried out using the Roboflow platform [27], which 
provided a streamlined workflow for labeling and data–
set augmentation. 

Model training was conducted on Google Colab 
using GPU acceleration. The training process involved 
multiple epochs with early stopping and validation 
monitoring to prevent overfitting. Upon achieving 
satisfactory accuracy and loss convergence, the trained 
model was exported to the deployment format 
compatible with the robot’s control system. 

During real-time operation, the YOLOv12 model is 
executed on a local computing unit connected to the 
vision system. Once an object is detected, the bounding 
box coordinates are extracted and processed to compute 
the object's position relative to the camera. This 2D 
information is then mapped to the robot's workspace 
through a calibrated transformation, allowing the system 
to calculate the corresponding joint angles required to 
reach the object. These angles are subsequently sent to 
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the servo controller, enabling the robotic arm to execute 
the pick-and-place task. 

The primary purpose of this application is to provide 
students with practical experience in applying artificial 
intelligence to real-world robotics problems. Through 
this task, students learn how to collect and annotate 
image data, train and evaluate object detection models, 
and deploy them within a functioning robot system. 
Furthermore, they gain insight into how vision-based 
outputs are converted into spatial positions and then into 
joint angle commands to control the robot. This hands-
on activity helps bridge the gap between theoretical 
concepts and real-world applications, fostering inter–
disciplinary skills in AI, computer vision, control engi–
neering, and automation. 

 
5. RESULTS AND DISCUSSIONS 
 
The robotic arm was fabricated using 3D printing 
technology, enabling the creation of low-cost, modular, 
and easily replicable components. After printing, all 
joints and links were manually assembled into a comp–
lete manipulator model as shown in Figure 16. During 
operation, the robotic arm is connected to a laptop that 
runs both the control interfaces and the image pro–
cessing programs required for various tasks. These 
programs are optimized to run efficiently on standard 
laptops equipped with only a CPU, without the need for 
expensive GPU hardware. This design choice ensures 
accessibility and cost-effectiveness for educational en–
vironments. The vision system can utilize either the 
laptop's built-in webcam or an external USB camera, 
offering flexibility depending on the available hardware. 
This setup allows students to easily experiment with AI-
driven robotic applications using readily available and 
affordable equipment. 

 
Figure 16. The 3D-printed robotic arm is connected to a 
laptop running control and vision-based applications. 

To evaluate the face tracking functionality, the sys–
tem was tested under real-time conditions using a 
webcam as the input source. The results are illustrated 
in Figure 17, which shows the detected face enclosed in 
a green bounding box, with the center point (u, v) 
marked, and the estimated bounding box area s. These 
values were used to compute the corresponding 3D 
coordinates (X, Y, Z) of the target position using a 
calibrated linear mapping. 

Additionally, to monitor the robot's response to the 
tracked target, the end-effector coordinates and cal–

culated joint angles were plotted over time, as shown in 
Figure 18. The upper graph demonstrates the dynamic 
changes in spatial position X, Y, Z while the lower graph 
visualizes the angular displacement of each joint (θ0, θ1, 
θ2, θ3) in real time. The plotted data confirm that the 
robot successfully followed the user’s head movement, 
making continuous adjustments to its joints based on the 
inverse kinematics solution. 

 
Figure 17. Result of the face tracking module. 

 
Figure 18. Real-time plots showing the robot’s kinematic 
response. 

To evaluate the effectiveness of gesture-based cont–
rol, a series of predefined hand poses was tested using 
the MediaPipe Hands module. The system was 
configured to recognize eight distinct gestures, each 
corresponding to a specific control command for the 
robot's motion or gripper operation. The results of the 
gesture recognition are illustrated in Figure 19. Each 
sub-image in Figure 19 displays a hand pose overlaid 
with red landmarks and skeletal lines representing 
detected keypoints. The corresponding command is 
displayed in red text. 

The gesture recognition was performed in real time 
with minimal latency (typically under 200 ms), and the 
system maintained high reliability under standard 
lighting conditions. The experimental results demon–
strate that the hand gesture control module can be 
effectively used for intuitive, non-contact control of the 
robotic arm. 

The integration of computer vision techniques into 
robotic control opens up a more intuitive and engaging 
way for users, especially students, to interact with 
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robotic systems. In this project, two vision-based 
interaction methods were implemented: face tracking 
and hand gesture recognition. These approaches not 
only serve practical functions in controlling the robot's 
position and gripper, but also provide students with 
valuable hands-on experience in interdisciplinary topics. 

 

 
Figure 19. Hand gesture recognition results mapped to 
robot control commands. 

Through the face tracking exercise, students are 
introduced to concepts such as object detection, coor–
dinate transformation, and inverse kinematics. By ob–
serving how the robot responds to their head 
movements in real time, they gain an understanding of 
how image-space data can be translated into physical-
world robot coordinates, and how joint angles are 
calculated to reach those positions. 

The hand gesture control activity reinforces under–
standing of human-computer interaction, real-time land–
mark detection, and state-based control logic. Students 
learn how distinct hand poses can be classified and 
mapped to robot commands, enhancing their knowledge 
of pattern recognition and control systems. 

Overall, these exercises help students build a 
foundational understanding of AI, computer vision, and 
robotics, while fostering computational thinking, prob–
lem-solving skills, and creativity. More importantly, 
they offer a tangible demonstration of how theoretical 
concepts in mathematics (e.g., trigonometry, coordinate 
geometry), programming, and control engineering come 
together in real-world robotic applications. 

Figure 20 illustrates a model setup for simulating the 
operation of a production line, where the robot performs 

the tasks of picking up and sorting objects transported 
on the conveyor. An RGB camera is fixed above the 
conveyor to observe objects as they move through the 
work area. Images from the camera are processed by a 
trained YOLOv12 model, which is capable of accurately 
recognizing common objects in the classroom, such as 
ballpoint pens, markers, erasers, etc. 

 
Figure 20. Experimental setup of the pick-and-place 
production line model with robotic arm, conveyor belt, 
vision system, and sorting containers. 

After the object is detected, the system extracts the 
coordinates of the bounding box and converts them to 
actual coordinates on the conveyor plane. These coor–
dinates are then calculated kinematically to convert 
them into rotation angles for each robot joint, enabling 
the gripper to move accurately to the object's location. 

Finally, the robot uses a gripper to pick up the object 
and place it in pre-classified positions according to its 
type (for example, a pen in tray A, a marker in tray B, 
etc.). This process replicates an industrial automated 
product sorting system, demonstrating the effective 
combination of computer vision, artificial intelligence, 
and precision robotic control systems. 

 
Figure 21. Training loss and evaluation metrics of the 
YOLOv12 model. 

Figure 21 illustrates the training process of the 
YOLOv12 model on a dataset of common objects in a 
school environment, including pens, pencils, and 
erasers. The graphs showing the metrics such as 
train/loss, val/loss, precision, recall, and mean Average 
Precisionat IoU threshold of 0.5 (mAP@0.5) all show a 
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steady improvement trend over each epoch. This indi–
cates that the model learns effectively and has the 
ability to generalize well. 

 
Figure 22. Confusion matrix on the validation dataset. 

Figure 22 is the confusion matrix after training the 
model. Here, labels such as "eraser", "highlight", "mar–
ker", "pen", and "background" all achieve high accu–
racy. Some small confusion between objects of the same 
type (e.g., between a pen and a marker) is acceptable in 
a real environment. 

 
Figure 23. Object detection results in real classroom 
scenarios. 

Figure 23 shows the actual detection results with 
objects placed on the conveyor belt. The bounding 
boxes and labels are assigned with clear confidence 
scores, showing that the system can handle multiple 
objects simultaneously and assist the robot in locating 
and classifying the object to be picked. 

This exercise provides students with an opportunity 
to understand and apply artificial intelligence in a real-
world context, specifically in the field of robotic 
automation. By simulating a smart production line using 

a robotic arm and a conveyor belt, learners gain insight 
into how robots are used in industrial environments for 
tasks such as object detection, classification, and 
automated sorting. 

Through the data collection and model training 
process, students become familiar with essential steps in 
developing an AI system. These include capturing and 
annotating images, organizing datasets, training object 
detection models (such as YOLOv12) using platforms 
like Roboflow and Google Colab, and validating model 
performance. During this process, students also learn 
how to interpret key evaluation metrics, such as preci–
sion, recall, Mean Average Precision (mAP), and loss 
functions, which helps them develop critical skills in 
assessing AI effectiveness. 

Beyond the software component, this activity emp–
hasizes the integration of AI with hardware systems. 
Students learn how object detection outputs (e.g., 
bounding box coordinates) are translated into robot joint 
movements using inverse kinematics. The combination 
of computer vision, AI models, servo motors, a conve–
yor belt, and gripper control demonstrates how multiple 
subsystems can be orchestrated to achieve intelligent 
automation. 

By completing this exercise, students not only dee–
pen their understanding of robotic systems but also 
develop interdisciplinary competencies that span AI, 
computer vision, mechanical control, and real-time sys–
tem integration, key areas in modern STEM and 
engineering education. 

 
6. CONCLUSIONS 

 
This paper presented the development of a low-cost, 
open-source robotic arm platform for STEM education, 
with a focus on integrating mechanical design, embed–
ded control, and intelligent perception. The system 
comprises a 4-DOF robotic manipulator driven by servo 
motors, an ESP32-based embedded controller for real-
time operation, and dual control interfaces supporting 
both local (PyQt5) and remote (IoT-based) access. 
Additionally, computer vision modules powered by 
YOLO object detection and MediaPipe-based face and 
hand tracking were integrated to enable interactive, AI-
driven manipulation tasks. 

Experimental demonstrations validated the system’s 
functionality across multiple educational scenarios. Stu–
dents were able to control the robot via facial tracking 
and hand gestures, detect and pick objects using real-
time vision, and interact with the platform through both 
GUI and cloud-based interfaces. The results confirm 
that the platform effectively supports interdisciplinary 
learning, covering topics in mechanics, electronics, 
programming, AI, and human–robot interaction. More–
over, the platform’s modular and extensible design en–
sures scalability and adaptability to a range of educa–
tional levels and curricula. 

For future work, several enhancements are envisi–
oned. These include implementing inverse kinematics 
for automated trajectory planning, adding depth sensing 
for 3D perception, and extending the AI modules with 
learning-based grasp planning or voice interaction. 
Further classroom evaluations across different age 



 

104 ▪ VOL. 54, No 1, 2026 FME Transactions
 

groups and education settings will also be conducted to 
quantitatively assess the platform’s impact on learning 
outcomes and engagement. Ultimately, the proposed 
system contributes toward bridging the gap between 
traditional educational robotics and the intelligent, 
connected systems demanded by Industry 4.0. 
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NOMENCLATURE 

θ1 
Base rotation joint angle (rotation about 
vertical Z-axis) 

θ2 Vertical-plane joint angle (shoulder) 
θ3 Vertical-plane joint angle (elbow) 
θ4 Gripper angle 

(X, Y, Z) End-effector position in robot Cartesian 
coordinates 

(u, v) Pixel coordinates of the bounding-box 
centroid in the image plane 

s Face bounding-box area 
Wf, Hf Width and height of the video frame 

kx, ky, kz 
Scaling factors in mapping from (u, v, 
s) to (X, Y, Z) 

li Link length(s) in the kinematic model 
d0 Vertical offset from the base 

Acronyms and abbreviations 

AC Alternating Current 
AI Artificial Intelligence 
C1-C5 Step size levels 
DC Direct Current 
DC-DC DC-to-DC Converter 
DOF Degree(s) of Freedom 
GPIO General-Purpose Input/Output 
GUI Graphical User Interface 
IoT Internet of Things 
IoU Intersection over Union 
K-12 Kindergarten to 12th grade 
MQTT Message Queuing Telemetry Transport 

PWM Pulse Width Modulation 
RGB Red–Green–Blue 
ROS Robot Operating System 

STEM Science, Technology, Engineering, and 
Mathematics 

USB Universal Serial Bus 
YOLO You Only Look Once 
YOLOv12 YOLO version 12 
mAP mean Average Precision 
mAP@0.5 mean Average Precision at IoU=0.5 

 
 

РАЗВОЈ ОБРАЗОВНЕ РОБОТСКЕ 
ПЛАТФОРМЕ СА ДВОСТРУКИМ 

КОНТРОЛНИМ ИНТЕРФЕЈСИМА И 
ИНТЕЛИГЕНТНОМ ИНТЕРАКЦИЈОМ 

ЗАСНОВАНОМ НА КОМПЈУТЕРСКОМ ВИДУ 
 

Д.Ф. Тин, В.Т.Н. Хан, Н.Н. Тин, Н.В.Д. Хуј,  
Т.К. Туан, Н.Н. Дуј, Ф.Т. Дат, В.К. Хиеу,  

В.Д. Конг 
 

Овај рад представља развој јефтине образовне ро–
ботске платформе са омогућеном вештачком инте–
лигенцијом дизајниране да побољша практично 
СТЕМ учење. Систем се састоји од роботске руке са 4 
степена слободе (DOF) конструисане од 3Д 
штампаних компоненти, контролисане помоћу кола 
заснованог на ESP32 и интегрисане са локалним и 
веб-базираним интерфејсима за флексибилан рад. 
Развијена су два контролна интерфејса: локални 
десктоп ГУИ изграђен са PiKt5 и удаљени веб-
базирани интерфејс који користи MKTT протокол. 
Оба интерфејса омогућавају корисницима да ручно 
контролишу углове зглобова робота, прилагођавају 
величину корака покрета, враћају се на подразу–
меване позиције и прате стања зглобова у реалном 
времену. Ови интерфејси пружају интуитивну инте–
ракцију, омогућавајући ученицима да разумеју 
контролу покрета у роботици. Да би се интегрисала 
вештачка интелигенција и компјутерски вид, имп–
лементирана су три модула: праћење лица, контрола 
покрета рукама и детекција објеката. Праћење лица 
преводи положај и величину лица у 3Д координате за 
кретање робота у реалном времену користећи 
инверзну кинематику. Препознавање покрета ру–
кама користи МедиаПипе за тумачење поза прстију и 
извршавање одговарајућих радњи робота. Модул за 
детекцију објеката користи YOLOv12 модел обучен 
на објектима у учионици (оловке, гумице, маркери) за 
обављање аутономних задатака бирања и постављања 
на симулираном транспортном систему. Експери–
ментални резултати потврђују ефикасност система у 
праћењу у реалном времену, интерпретацији покрета 
и манипулацији објектима. Графикони углова згло–
бова и координата радног простора у реалном 
времену илуструју одзивно понашање система. Ова 
интегрисана платформа омогућава студентима да 
истражују вештачку инте–лигенцију, визију и робо–
тику у јединственом окружењу. Кроз интерактивне 
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вежбе стичу прак–тично искуство у програмирању, 
развоју АИ модела, дизајну корисничког интерфејса 

и роботској контроли, повезујући теоријско знање и 
примене у стварном свету. 

 


