ID: 3167
врста предмета: научно-стручни
носилац предмета: Миљковић Ђ. Зоран
извођачи: Миљковић Ђ. Зоран
контакт особа: Миљковић Ђ. Зоран
ниво студија: Докторске студије – Машинско инжењерство
ЕСПБ: 5
облик завршног испита: презентација семинарског рада
Аутономни системи подразумевају развој интелигентних машина способних да остварују радне задатке у напредном технолошком окружењу кроз хардверско-софтверску интеграцију, без експлицитног управљања од стране човека-оператера. С обзиром да производне технологије 21. века обухватају ту хардверско-софтверску интеграцију аутономних система, посебно робота, као и аутоматизованих подсистема, овај предмет има за циљ да студенте докторских студија, преко теоријских и практичних аспеката, односно преко алгоритама машинског учења и метода емпиријског управљања аутономних система, из овог угла комплексног научног посматрања, оспособи за самосталан развој савремених технолошких система и процеса, њихово моделирање, примену и увођење, све до имплементације напредних технологија у оквиру интелигентних технолошких система, и то кроз освајање нових алгоритама и метода у домену вештачке интелигенције.
Почевши од фундаменталних концепата, овај предмет укључује наглашену научно-истраживачку мултидисциплинарност, базирану на биолошки инспирисаним основама, преко којих се остварују перспективе развоја научних области попут интелигентног управљања, вештачког живота и примене аутономних система у роботизованим производним технологијама 21. века. Исход овог предмета је оријентисан ка комплексном научном уздизању и развоју студената докторских студија, пре свега кроз интензиван научно-истраживачки рад заснован на експериментисању у домену хардверско-софтверске интеграције аутономних система у оквиру напредних технологија 21. века, са посебним акцентом на даљем развоју машинске интелигенције и учења (computational intelligence; машинско Q-учење ојачавањем; напредне технике вештачке интелигенције; биолошки инспирисани технолошки системи; итд.).
Теоријска настава је организована у више целина: • Аутономни рад и управљање машинских система - Биолошки инспирисано управљање интелигентних машина; • Фундаментални структурни елементи аутономних система - Однос сензор-актуатор; • Софтверске архитектуре за аутономне системе - Хијерархијске архитектуре; Реактивне и бихевиористичке архитектуре; Хибридне архитектуре; Отворене архитектуре; • Шта је то машинско учење? - Природа учења; Пробабилистички приступ машинском учењу; • Емпиријско управљање - Алгоритам емпиријског управљања; Примена и утицај аксиоматске теорије пројектовања на развој емпиријског управљања; • Управљање фамилије мобилних робота - Интелигентно управљање колоније једноставних мобилних робота; • Трендови развоја аутономних робота - Микро- и нано-роботи; Потенцијалне опасности интензивног развоја аутономних робота.
Практична настава је организована у више целина: • Локализација и изградња мапе технолошког окружења - увод у SLAM (лабораторијски рад); • Комуникативност и интерактивност робота у радном окружењу (лабораторијски рад); • Машинско учење у функцији развоја интелигентног управљања (лабораторијски рад); • Роботско учење (лабораторијски рад); Еволутивни алгоритми; Учење имитирањем; • Архитектуре интелигентног управљања мобилних робота (лабораторијски рад); Хетерогени роботски тимови и кооперативни рад; Реконфигурабилност мобилних робота; • Само-организовање, аутономна еволуција и само-репродукција робота.
Превасходно завршен технички факултет.
(1) З. Миљковић, М.М. Петровић, ИНТЕЛИГЕНТНИ ТЕХНОЛОШКИ СИСТЕМИ - са изводима из роботике и вештачке интелигенције (I издање), Oсновни универзитетски уџбеник, Универзитет у Београду – Машински факултет, XXVIII+409 стр., Београд, 2021, 18.1 (2) З. Миљковић, Д. Алексендрић, ВЕШТАЧКЕ НЕУРОНСКЕ МРЕЖЕ – збирка решених задатака са изводима из теорије (II издање), Помоћни универзитетски уџбеник, Универзитет у Београду - Машински факултет, 2018, 18.1 (3) Калајџић,М.,(редактор), Тановић,Љ., Бабић,Б., Главоњић,М., Миљковић,З., Пузовић,Р., и др., ТЕХНОЛОГИЈА ОБРАДЕ РЕЗАЊЕМ (IX издање), Приручник – помоћни универзитетски уџбеник, Универзитет у Београду - Машински факултет, 2021, 18.1 (4) З. Миљковић, Системи вештачких неуронских мрежа у производним технологијама, Серија монографских дела Интелигентни технолошки системи, Књига 8, Универзитет у Београду - Машински факултет, 2003, 18.1 (5) Б. Бабић, FLEXY – Интелигентни експерт систем за пројектовање ФТС, Серија монографских дела Интелигентни технолошки системи, Књига 5, Универзитет у Београду - Машински факултет, 1994, 18.1 (6) Лабораторијски мобилни роботи (PAL-TIAGo - Mobile Manipulator Robot_индустријски мобилни робот са стерео машинским гледањем; K-Team's Khepera II мобилни робот са хватачем и камером; LEGO Mindstorms NXT и LEGO Mindstorms EV3 комплети реконфигурабилних мобилних робота опремљени сензорима и микроконтролерима; RAICO (Robot with Artificial Intelligence based Cognition) & DOMINO (Deep learning based Omnidirectional Mobile robot with INtelligent cOntrol) - прототипови мобилних робота сопственог развоја), Лабораторија CeNT, Универзитет у Београду - Машински факултет, 18.12 (7) Лабораторијски модел пројектованог технолошког система (учило), Лабораторија CeNT, Универзитет у Београду - Машински факултет, 18.12 (8) Софтверски пакети (BPnet, ART Simulator, MATLAB, Python 3.14.0rc2 and 3.13.7, AnyLogic, Flexy), Лабораторија CeNT, Универзитет у Београду - Машински факултет, 18.13
укупан фонд часова: 65
ново градиво: 30
разрада и примери (рекапитулација): 20
аудиторне вежбе: 0
лабораторијске вежбе: 0
рачунски задаци: 0
семинарски рад: 0
пројекат: 0
консултације: 0
дискусија/радионица: 0
студијски истраживачки рад: 0
преглед и оцена рачунских задатака: 0
преглед и оцена лабораторијских извештаја: 0
преглед и оцена семинарских радова: 10
преглед и оцена пројекта: 0
колоквијум са оцењивањем: 0
тест са оцењивањем: 0
завршни испит: 5
активност у току предавања: 20
тест/колоквијум: 0
лабораторијска вежбања: 0
рачунски задаци: 0
семинарски рад: 40
пројекат: 0
завршни испит: 40
услов за излазак на испит (потребан број поена): 40
З. Миљковић, Д. Алексендрић, (2018) ВЕШТАЧКЕ НЕУРОНСКЕ МРЕЖЕ – збирка решених задатака са изводима из теорије, II издање, 225 стр. (ISBN 978-86-7083-961-8), Универзитет у Београду - Машински факултет.; R. Siegwart, I.R. Nourbakhsh, D. Scaramuzza, (2011) INTRODUCTION TO AUTONOMOUS MOBILE ROBOTS, 2nd Edition, 472 pp. (ISBN 9780262015356), The MIT Press, Cambridge, MA 02142.; G.A. Bekey, (2005) AUTONOMOUS ROBOTS: From Biological Inspiration to Implementation and Control, 577 pp. (ISBN 9780262025782), The MIT Press, Cambridge, Massachusetts, London, England.; R.A. Brown, (1994) MACHINES THAT LEARN: Based on the Principles of Empirical Control, 891 pp. (ISBN 9780195069662), Oxford University Press.; E. Alpaydin, (2010) INTRODUCTION TO MACHINE LEARNING, 2nd Edition, 400 pp. (ISBN 9780262012119), The MIT Press, Cambridge, England.;
Универзитет у Београду, Машински факултет
Краљице Марије 16, 11120 Београд 35
тел. (+381 11) 3302-200, факс 3370364
mf@mas.bg.ac.rs